基于LSC‑CRC译码的分段极化码编译码方法及系统与流程

文档序号:12729419阅读:394来源:国知局
导航: X技术> 最新专利> 电子电路装置的制造及其应用技术
基于LSC‑CRC译码的分段极化码编译码方法及系统与流程

本发明涉及信道编码技术领域,尤其涉及的是基于LSC-CRC译码的分段极化码编译码方法及系统。



背景技术:

信源编码是一种以提高通信有效性,减少信源冗余度而进行的符号变换。通过针对信源输出符号序列的统计特性来寻求某种方法,把信源输出符号序列变换成最短的码字序列,使后者的各码元所载荷的平均信息量最大,同时又可以保证物是真的回复原来的符号序列。是数字通信领域的一种重要的技术手段。

各种通信系统,虽然他们的形式和用途各不相同,但从信息传输、存储和处理的角度来看,本质上都是有两个收发端的通信系统,参见图1。信源10是产生消息的源,编码器20是将信源发出的消息变换成适于信道传送信号的设备,一般分为三个部分,即信源编码器,纠错编码器和调制器。信道30是将信号从发端传送到收端的媒质或通道,它是包括首发设备在内的物理设施,干扰源40是为了分析方便,将整个通信系统中各部分引入各种干扰,这种干扰源的统计特性是划分信道的重要因素,并且是决定信道传输能力的决定因素,译码器50是编码的逆变换,它要从受干扰的信号中最大限度的提取出有关信源10输出消息的信息,应尽可能精确地恢复信源10的输出,并将他们传递给信宿60,信宿60是信息的接受者,可以使人或者是物。

在极化码之前的信道编码主要有Turbo码和LDPC码。Turbo码是由两个或两个以上简单分量码编码器通过交织器并行级联在一起而构成的,信息序列首先送入第一个编码器,交织后送入第二个编码器。输出的码字有三部分构成:输入的信息序列,第一个编码器产生的校验序列和第二个编码器对交织后的信息序列产生的校验序列,Turbo码采用迭代译码,每次迭代采用的是软输入和软输出。Turbo码是目前已知的在信道截止频率和信道容量之间的最有效的译码方法。LDPC码是一类特殊的(n,k)线性分组码,其校验矩阵中绝大多数元素都为0,只有少部分为,即H是稀疏的。稀疏性使译码复杂度降低,实现更为简单。

自2009年Arikan提出极化码以来,关于极化码的研究已经成为信息论和编码领域的研究热点之一。极化码是一种可以渐进性能逼近香农限,同时有着低编码复杂度,并且能广泛使用于各种不同信道尝尽的信道编码方法。

极化码的一个重要的理论基础是信道的极化特性。用映射:w:x→y表示一个抽象的BDMC信道,该信道的输入为x={0,1},输出符号集为y,w(y|x),x∈x,y∈y:表示信道w的转移概率,并且定义为离散二进制无记忆信道的w的Bhattacharyya参数(即巴哈塔切亚参数),定义离散二进制无记忆信道w的信道容量。参数z(w)和I(w)分别是信道w的可靠性和最大传输速率的一个量度。图2中给出了位信道的示意图,给定一个BDM信道w,将编码码字以此送入信道w,接受到向量对于任意一给定的i,1≤i≤N,可以定义一个形式信道其输入为ui∈x,输出为转移概率为对于任意的BDM信道,具有上述转移概率的N=2m个位信道有如下极化现象,对于任意的δ∈(0,1),当N趋于无穷大时,满足的位信道个数与为信道总数的比率趋向于I(w),而满足的位信道个数与位信道总数的比率趋向于1-I(w)。从上述中可以发现,当N趋于无穷大时N个位信道的对称信道容量要么趋于1,要么趋于0,这就是信道的极化现象。因此在发送时可以用信道容量趋于1的信道来传输信息比特,用信道容量趋于0的信道来传输固定比特。

因此极化码编码的一个关键的技术就是码的构造即设计算法挑选出来那些已经完全极化了的信道来传输信息比特,其余的信道来传输固定比特。现在常用的码的构造的算法有三种即蒙特卡罗法,密度进化法和高斯近似法,这三种方法都适用于高斯信道,但是高斯近似的极化码构造方法拥有较好的性能和较低的复杂度。

极化码编码最重要的思想是利用极化现象去构造一个编码系统,这样就可以通过合并和拆分后的信道来发送信息比特,而这些信道的容量为1。极化码属于一种线性分组码,生成矩阵GN的构造是编码过程中的重要组成部分,也是编码的核心内容,假设任意的n≥0都有N=2n,定义Ik为k维单位矩阵,其中k≥1,给出GN的定义,对于N≥2都有其中G1=I1,矩阵又由于可得从而可以得到其中BN是一个比特翻转矩阵。图3给出了N=4的比特翻转矩阵的示意图。

极化码的属于一种GN陪集码,所以编码的方法是采用GN作为生成矩阵,但是在选取信息比特位上的方法不一样,极化码主要依赖于信道极化现象,信息比特在完全极化的信道上进行传输。极化码编码的编码块长度被严格定义为2的幂次方。陪集码每一帧用K个数据以及另外N-K个固定数据向量组成的向量与令一个N×N矩阵GN进行二进制乘法运算,生成一个长度为N的码字即

极化码译码的经典方法是接续取消译码算法(SC),这种算法主要利用了极化码的递归特性,但是也由于极化码的递归特性导致在译码的时候出现延迟,并且由于SC译码算法只保留一条译码路径,前边比特位的译码失败会导致后续译码失败的可能性大大增大。针对译码的时延方向上主要是在硬件的架构上进行实现,也有一些算法上的实现如:MSC算法;在针对译码的准确度的方向上主要有列表取消译码算法(LSC),堆栈接续取消译码算法(SSC)等译码算法。

LSC译码算法作为SC译码算法的一种演进版本,在提出了译码的时候,每次存储的不只是一条路径,而是把每个路径都复制后存入列表中,如果列表中路径的数目小于设定值L时,在下一个状态时现有的每一个路径都进行复制,如果列表中译码的路径大于设定值L时,则需要去除一些路径保证列表中路径数目的最大值为L,删除路径的依据是选择现有路径中L条最大后验概率。SCL译码算法在列表中同时保存L条路径,每条路径占用O(N)的空间,因此L条路径占用O(LN)。由于在解码的时候,L条路径都会复制一次因此复制出来的这L条路径占用的空间也是O(LN),又由于LSC解码的时候一共有N个层次,因此LSC会占用O(LN2)的空间复杂度。

SSC译码算法相对于LSC算法来说可以节省很多不必要的计算当信噪比很大的时候,但是在SSC算法中用到堆栈要比LSC中的大很多。一般为了减少译码效果的降低,堆栈的容量D要有LN大,这样译码的空间复杂度就会变成O(LN2)。

因此,现有技术还有待于改进和发展。



技术实现要素:

鉴于上述现有技术的不足,本发明的目的在于提供基于LSC-CRC译码的分段极化码编译码方法及系统,旨在解决现有技术中译码技术空间复杂度高,且译码准确性低的问题。

本发明的技术方案如下:

一种基于LSC-CRC译码的分段极化码编译码方法,其中,所述方法包括以下步骤:

A、将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;其中,比特信道的容量大于预设的容量阈值则为完全极化的比特信道;

B、将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;

C、在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。

所述基于LSC-CRC译码的分段极化码编译码方法,其中,所述步骤A具体包括:

A1、将n个独立的信道通过递归合并成合并信道;其中,n为正整数;

A2、将合并信道根据信道的转移概率进行拆分,拆分成与独立的信道个数相同的比特信道;

A3、根据蒙特卡罗法、密度进化法或高斯近似法获取各比特信道的容量;

A4、统计获取完全极化的比特信道的个数,将完全极化的比特信道的个数记为m;其中,比特信道的容量大于0.9则为完全极化的比特信道,m为正整数、且m≤n。

所述基于LSC-CRC译码的分段极化码编译码方法,其中,所述步骤B中具体包括:

B1、根据待传输的信息序列(n,k),得到待传输的自由信息比特序列F=round(n×k);其中n为码长,k为码率;

B2、获取与完全极化的比特信道的个数记为m之差最小的2的幂次数M,并判断F是否能被M整除;

B3、当F能被M整除时,则将待传输的自由信息比特序列F拆分为R个子序列;其中R=F/M,且每一子序列的长度为M;

B4、当F不能被M整除时,则F除以M的商记为R、余数记为Q,并将将待传输的自由信息比特序列F拆分为R+1个子序列;其中R+1个子序列中的前R个子序列中均填充F的子序列,R+1个子序列中的最后一个个子序列中前Q个比特位填充F的子序列,后M-Q个比特位均填充0;

B5、将每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中。

所述基于LSC-CRC译码的分段极化码编译码方法,其中,所述步骤C中具体包括:

C1、在接收端接收到编码之后的信息,并根据LSC-CRC译码算法分段进行译码,得到相应段数的译码子序列;其中LSC-CRC译码算法对应公式如下:

其中,表示码长为N比特序号为奇数位的译码似然比,表示码长为N比特序号为偶数为译码似然比,表示码长为N/2且比特信道为两个位信道异或后组合信道对应传送比特的译码似然比,表示码长为N/2且比特信道为没有经过异或之后信道对应穿送比特的译码似然比。表示表示第i比特位的译码似然比,表示第i个比特的译码结果;

C2、将译码子序列首尾拼接起来得到译码序列。

所述基于LSC-CRC译码的分段极化码编译码方法,其中,所述步骤C2具体包括:

C21、当待传输的自由信息比特序列F拆分为R个子序列时,则将R个译码子序列首尾拼接起来得到译码序列;

C22、当待传输的自由信息比特序列F拆分为R+1个子序列时,则将前R个译码子序列以及最后1个译码子序列的前M-Q位首尾拼接起来得到译码序列。

一种基于LSC-CRC译码的分段极化码编译码系统,其中,包括:

信道处理及计算统计模块,用于将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;其中,比特信道的容量大于预设的容量阈值则为完全极化的比特信道;

划分及编码模块,用于将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;

译码拼接模块,用于在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。

所述基于LSC-CRC译码的分段极化码编译码系统,其中,所述信道处理及计算统计模块具体包括:

递归合并单元,用于将n个独立的信道通过递归合并成合并信道;其中,n为正整数;

拆分单元,用于将合并信道根据信道的转移概率进行拆分,拆分成与独立的信道个数相同的比特信道;

容量获取单元,用于根据蒙特卡罗法、密度进化法或高斯近似法获取各比特信道的容量;

统计单元,用于统计获取完全极化的比特信道的个数,将完全极化的比特信道的个数记为m;其中,比特信道的容量大于0.9则为完全极化的比特信道,m为正整数、且m≤n。

所述基于LSC-CRC译码的分段极化码编译码系统,其中,所述划分及编码模块具体包括:

自由信息比特序列获取单元,用于根据待传输的信息序列(n,k),得到待传输的自由信息比特序列F=round(n×k);其中n为码长,k为码率;

整除判断单元,用于获取与完全极化的比特信道的个数记为m之差最小的2的幂次数M,并判断F是否能被M整除;

第一拆分单元,用于当F能被M整除时,则将待传输的自由信息比特序列F拆分为R个子序列;其中R=F/M,且每一子序列的长度为M;

第二拆分单元,用于当F不能被M整除时,则F除以M的商记为R、余数记为Q,并将将待传输的自由信息比特序列F拆分为R+1个子序列;其中R+1个子序列中的前R个子序列中均填充F的子序列,R+1个子序列中的最后一个个子序列中前Q个比特位填充F的子序列,后M-Q个比特位均填充0;

极化及发送单元,用于将每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中。

所述基于LSC-CRC译码的分段极化码编译码系统,其中,所述译码拼接模块具体包括:

译码单元,用于在接收端接收到编码之后的信息,并根据LSC-CRC译码算法分段进行译码,得到相应段数的译码子序列;其中LSC-CRC译码算法对应公式如下:

其中,表示码长为N比特序号为奇数位的译码似然比,表示码长为N比特序号为偶数为译码似然比,表示码长为N/2且比特信道为两个位信道异或后组合信道对应传送比特的译码似然比,表示码长为N/2且比特信道为没有经过异或之后组合信道对应穿送比特的译码似然比。表示表示第i比特位的译码似然比,表示第i个比特的译码结果;

拼接单元,用于将译码子序列首尾拼接起来得到译码序列。

所述基于LSC-CRC译码的分段极化码编译码系统,其中,所述拼接单元具体包括:

第一拼接分单元,用于当待传输的自由信息比特序列F拆分为R个子序列时,则将R个译码子序列首尾拼接起来得到译码序列;

第二拼接分单元,用于当待传输的自由信息比特序列F拆分为R+1个子序列时,则将前R个译码子序列以及最后1个译码子序列的前M-Q位首尾拼接起来得到译码序列。

本发明所提供的基于LSC-CRC译码的分段极化码编译码方法及系统,方法包括:将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。本发明中的信源编码和译码方法操作简单,编译码的空间复杂度降低,且译码准确性提高。

附图说明

图1是通信系统模型示意图。

图2是位信道的示意图。

图3是N=4时比特翻转示意图。

图4是N=1024是信道极化之后容量跟信道序号关系示意图。

图5是码率为0.5码长分别为128,256,1024时LSC-CRC译码算法和本发明所述基于LSC-CRC译码的分段极化码编译码方法误比特率对比图。

图6是码率为0.5码长分别为128,256,1024时LSC-CRC译码算法和本发明所述基于LSC-CRC译码的分段极化码编译码方法误码率对比图。

图7是本发明所述基于LSC-CRC译码的分段极化码编译码方法较佳实施例的流程图。

图8是本发明所述基于LSC-CRC译码的分段极化码编译码系统较佳实施例的结构框图。

具体实施方式

本发明提供基于LSC-CRC译码的分段极化码编译码方法及系统,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

如图7所示,为本发明基于LSC-CRC译码的分段极化码编译码方法较佳实施例的流程图,所述方法包括以下步骤:

步骤S100、将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;其中,比特信道的容量大于预设的容量阈值则为完全极化的比特信道;

步骤S200、将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;

步骤S300、在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。

本发明的实施例中,首先通过利用极化码构造的方法,求出多个独立的信道经过合并和拆分之后所得到的比特信道的容量,然后统计出来比特信道的容量大于预设的容量阈值的信道个数,然后将待传输的自由信息比特序列拆分成多个子序列,每个子序列的长度都为M,然后对拆分之后的子序列进行极化码的编码,再将编码之后的信息传送到对应的比特信道中,接收端接收到发送的编码之后的信息之后,依据LSC-CRC译码算法进行分段译码,然后每个译码子序列首位拼接得到译码序列。

具体的,所述步骤S100具体包括:

步骤S101、将n个独立的信道通过递归合并成合并信道;其中,n为正整数。

信道的合并是将n个独立的信道通过递归合并成一整个信道,记为合并信道,并且保证合并信道的容量和合并之前N个独立的信道的容量之和是相同的。其中,n也可以代表码长,当n=2时,只需要进行一次信道的组合和拆分,当n大于2时,需要进行log2N次信道的拆分和组合,所以要求码长n必须为2的幂次。

步骤S102、将合并信道根据信道的转移概率进行拆分,拆分成与独立的信道个数相同的比特信道。

信道的拆分是根据信道的转移概率将合并信道拆分成n个比特信道,经过信道的合并和拆分之后比特信道具有了极化的特性,一部分信道趋于1、其用来传输信息比特,另外一部分信道趋于0、其用来传输固定比特(一般为0)。

步骤S103、根据蒙特卡罗法、密度进化法或高斯近似法获取各比特信道的容量。

求得信道拆分之后各个比特信道的容量可以借助于极化码构造的方法。极化码的构造有3种具体的方法:蒙特卡罗法,密度进化法和高斯近似法,可以选择其中一种方法进行构造,就可以得到比特信道的容量。

若采用蒙特卡罗方法来获得信道的容量,包括以下操作步骤:

(2A)高斯信道传输全0码字,经BPSK调制之后传入信道;

(2B)根据信道的输出计算信道上的初始似然值,即

(2C)计算其中

(2D)若则该比特位的估值为0,则第i个信道的容量是:

若则该比特位的信道估值为1,则第i个信道的容量是:

2E)上述过程重复多次,比如1000次,即传输1000个码字,对每个子信道上得到的1000个Z值进行加权平均,即得到该子信道上的近似Bhattacharyya值(即巴哈塔切亚值),然后对这些值从小到达排序。

若采用密度进化算法来获得信道容量,则包括以下操作步骤:

(2a)不是一般性,高斯信道下仍传输全0码字,经BPSK调制后传入信道。

(2b)根据信道传输计算信道上的初始似然值

(2c)计算其中:

(2d)根据计算该子信道的错误概率函数值:

(2e)将子信道错误概率排序,即可得信道容量。

若采用高斯近似的方法来获得信道容量,则包括以下操作步骤:

(21)在高斯信道下,根据信道的输出计算信道上的初始似然值这里

(22)根据下列公式计算若i为奇数则

若i为偶数则

其中,

(23)计算每个信道的错误概率

(24)将子信道错误概率排序完成码的构造从而得到信道的容量。

在步骤S103中获取完全极化的比特信道的个数m时,同时将极化之后的比特信道的容量从大到小排列,并且记下对应的比特信道的序号,组成一个序列为Inds。

步骤S104、统计获取完全极化的比特信道的个数,将完全极化的比特信道的个数记为m;其中,比特信道的容量大于0.9则为完全极化的比特信道,m为正整数、且m≤n。

根据步骤S103可以得到拆分之后各个比特信道的容量,在本发明中可规定信道的容量大于0.9的比特信道看作是完全极化的比特信道,统计拆分信道之后得到比特信道的容量大于0.9的信道个数,即为完全极化的比特信道的个数,在本发明中完全极化的比特信道的个数记为m,m为正整数、且m≤n。拆分之后的信息序列分别进行编码其中中下标是为Inds序列中的前M的比特位传输拆分的待传输的自由信息比特序列F中的部分,剩余的比特位的值为0。

其中,图4中示意了信道极化后的容量与信道序号的关系,其中图4的横坐标Bit Channel Index(i)表示信道序号,纵坐标Capacity of i th channel表示第i号信道的容量。

当码长为64,128,256,512,1024,码率分别为0.5,0.7时统计出的完全极化的信道的个数M,请参考如下的表1,及图5和图6:

表1

在图5和图6中,对应码率为0.5(即rate=0.5)时在不同的误块(即EB,图5和图6的横坐标的都是EB)下对应的误比特率(即BER,图5和图6的纵坐标的都是BER)。

优选的,所述步骤S200具体包括:

步骤S201、根据待传输的信息序列(n,k),得到待传输的自由信息比特序列F=round(n×k);其中n为码长,k为码率。

将待传输的信息序列记为(n,k),则定义待传输的自由信息比特序列为F=round(n×k),根据完全极化的比特信道的个数记为m将F拆分。

步骤S202、获取与完全极化的比特信道的个数记为m之差最小的2的幂次数M,并判断F是否能被M整除。

根据步骤S104中统计出来的完全极化的比特信道的个数m因为极化码的编码要求码长必须为2的幂次,而m可能会出现不是2的幂次的情况,所以需要将m进行修正,具体的将m修正成成离m最近的2的幂次数M。

步骤S203、当F能被M整除时,则将待传输的自由信息比特序列F拆分为R个子序列;其中R=F/M,且每一子序列的长度为M;

步骤S204、当F不能被M整除时,则F除以M的商记为R、余数记为Q,并将将待传输的自由信息比特序列F拆分为R+1个子序列;其中R+1个子序列中的前R个子序列中均填充F的子序列,R+1个子序列中的最后一个个子序列中前Q个比特位填充F的子序列,后M-Q个比特位均填充0;

步骤S205、将每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中。

将编码之后的信息送入到比特信道中进行传输。在极化码中规定在极化后信道容量趋于完全好的信道中传输自由比特,在极化之后变成完全噪声的信道中传输固定比特一般为0。对于一个码长为N,码率为R的信息序列来说,需要发送的信息比特的位数为F,在之前方法中则直接按照信道容量从大到小选择F个比特信道来传输信息比特,这就会导致有一些极化之后信道容量不是很大的比特信道被选来传输信息比特,导致在接受端译码的时候出现译码出错的概率大大增加。因此在本发明中通过之前所述步骤S104选出了比特信道的容量大于0.9的信道来传输信息比特,这样使得译码短的译码的准确率大大提高,这也是本发明在信道传输中的特征所在。

优选的,在所述基于LSC-CRC译码的分段极化码编译码方法中,所述步骤S300中具体包括:

步骤S301、在接收端接收到编码之后的信息,并根据LSC-CRC译码算法分段进行译码,得到相应段数的译码子序列;其中LSC-CRC译码算法对应公式如下:

其中,表示码长为N比特序号为奇数位的译码似然比,表示码长为N比特序号为偶数为译码似然比,表示码长为N/2且比特信道为两个位信道异或后组合信道对应传送比特的译码似然比,表示码长为N/2且比特信道为没有经过异或之后组合信道对应穿送比特的译码似然比。表示表示第i比特位的译码似然比,表示第i个比特的译码结果;

步骤S302、将译码子序列首尾拼接起来得到译码序列。

在本发明中采用的译码的算法是LSC-CRC译码算法,CRC是一种循环校验的算法。LSC-CRC译码的算法在是在SC译码算法上提出的改进,在SC译码算法中只保留一条路径,前边比特位译码的失败会导致后续比特位译码失败的可能大大增加而LSC译码算法可以解决这个问题,通过保存最多L条路径来进行译码,然后在L条路径中选择最佳的译码路径可以使得译码的准确性大大提高,由于引进了L条路径则使循环校验成为了可能,把译码之后的L条路径同进CRC校验器中进行校验,选择可以通过CRC校验的路径作为最终的译码路径,如果所有的路径都不可以通过CRC校验则译码失败。

优选的,所述基于LSC-CRC译码的分段极化码编译码方法中,所述步骤S302具体包括:

步骤S3021、当待传输的自由信息比特序列F拆分为R个子序列时,则将R个译码子序列首尾拼接起来得到译码序列;

步骤S3022、当待传输的自由信息比特序列F拆分为R+1个子序列时,则将前R个译码子序列以及最后1个译码子序列的前M-Q位首尾拼接起来得到译码序列。

可见,与现有技术相比本发明在提高极化码译码的准确度上有着大大的提高。通过仿真看出,当码长为1024,码率为0.5时,把需要发送的信息序列拆分成两段之后进行发送,不管是误码率还是误比特率都可以达到0。

基于上述方法实施例,本发明还提供一种基于LSC-CRC译码的分段极化码编译码系统。如图8所示,所述基于LSC-CRC译码的分段极化码编译码系统包括:

信道处理及计算统计模块100,用于将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;其中,比特信道的容量大于预设的容量阈值则为完全极化的比特信道;

划分及编码模块200,用于将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;

译码拼接模块300,用于在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。

优选的,在所述基于LSC-CRC译码的分段极化码编译码系统中,所述信道处理及计算统计模块100具体包括:

递归合并单元,用于将n个独立的信道通过递归合并成合并信道;其中,n为正整数;

拆分单元,用于将合并信道根据信道的转移概率进行拆分,拆分成与独立的信道个数相同的比特信道;

容量获取单元,用于根据蒙特卡罗法、密度进化法或高斯近似法获取各比特信道的容量;

统计单元,用于统计获取完全极化的比特信道的个数,将完全极化的比特信道的个数记为m;其中,比特信道的容量大于0.9则为完全极化的比特信道,m为正整数、且m≤n。

优选的,在所述基于LSC-CRC译码的分段极化码编译码系统中,所述划分及编码模块200具体包括:

自由信息比特序列获取单元,用于根据待传输的信息序列(n,k),得到待传输的自由信息比特序列F=round(n×k);其中n为码长,k为码率;

整除判断单元,用于获取与完全极化的比特信道的个数记为m之差最小的2的幂次数M,并判断F是否能被M整除;

第一拆分单元,用于当F能被M整除时,则将待传输的自由信息比特序列F拆分为R个子序列;其中R=F/M,且每一子序列的长度为M;

第二拆分单元,用于当F不能被M整除时,则F除以M的商记为R、余数记为Q,并将将待传输的自由信息比特序列F拆分为R+1个子序列;其中R+1个子序列中的前R个子序列中均填充F的子序列,R+1个子序列中的最后一个个子序列中前Q个比特位填充F的子序列,后M-Q个比特位均填充0;

极化及发送单元,用于将每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中。

优选的,在所述基于LSC-CRC译码的分段极化码编译码系统中,所述译码拼接模块300具体包括:

译码单元,用于在接收端接收到编码之后的信息,并根据LSC-CRC译码算法分段进行译码,得到相应段数的译码子序列;其中LSC-CRC译码算法对应公式如下:

其中,表示码长为N比特序号为奇数位的译码似然比,表示码长为N比特序号为偶数为译码似然比,表示码长为N/2且比特信道为两个异或后组合信道对应传送比特的译码似然比,表示码长为N/2且比特信道为没有经过异或之后组合信道对应穿送比特的译码似然比。表示表示第i比特位的译码似然比,表示第i个比特的译码结果;

拼接单元,用于将译码子序列首尾拼接起来得到译码序列。

优选的,在所述基于LSC-CRC译码的分段极化码编译码系统中,所述拼接单元具体包括:

第一拼接分单元,用于当待传输的自由信息比特序列F拆分为R个子序列时,则将R个译码子序列首尾拼接起来得到译码序列;

第二拼接分单元,用于当待传输的自由信息比特序列F拆分为R+1个子序列时,则将前R个译码子序列以及最后1个译码子序列的前M-Q位首尾拼接起来得到译码序列

综上所述,本发明所提供的基于LSC-CRC译码的分段极化码编译码方法及系统,方法包括:将多个独立的信道进行合并和拆分,得到与独立的信道个数相同的比特信道,获取各比特信道的容量,统计获取完全极化的比特信道的个数;将待传输的自由信息比特序列根据完全极化的比特信道的个数划分成相应个数的子序列,对每一子序列进行极化码编码,将编码之后的信息发送至相应的比特信道中;在接收端接收到编码之后的信息,根据LSC-CRC译码算法分段进行译码,最后将译码后得到的译码子序列首尾拼接起来得到译码序列。本发明中的信源编码和译码方法操作简单,编译码的空间复杂度降低,且译码准确性提高。

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

完整全部详细技术资料下载
当前第1页 1  2  3 
相关技术
  • 一种基于极化码的级联纠错编译...
  • 一种基于双向最佳匹配的分布式...
  • 在多级Δ‑Σ模数转换器中的信...
  • 一种高分辨率电流/频率转换电...
  • 一种自适应调整高速采样速率的...
  • DAC开关失配误差的数字测量...
  • 一种ADC有效位检测系统的制...
  • DAC时序失配误差的数字测量...
  • 切换电容电路与其补偿方法,模...
  • 一种电流舵数模转换器及电流舵...
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1
极化码的编码与译码相关技术
  • 极化编码调制中信道可靠度的确定方法及装置的制造方法
  • 基于超前计算的高维基极化码译码器和极化码译码方法
  • 一种基于提前终止迭代策略的极化码改进bp译码方法
  • 一种基于极化旋转角速度离散化编码的频谱变换方法
  • 一种基于概率计算的极化码译码器和极化码译码方法
  • 一种基于极化码的网络编码协作通信方法
  • 用于可缩放视频译码和3d视频译码的一般化残差预测的制作方法
  • 图像的编码方法和图像的译码方法
  • 编码系统与译码系统以及编码方法与译码方法
  • 图像的编码方法和图像的译码方法
极化码bp译码因子图相关技术
  • 一种极化码的译码方法与流程
  • 结合极化码的MIMO系统联合检测译码方法与流程
  • 一种基于分段Hash序列的极化码译码方法与流程
  • 极化码的编码方法、译码方法、编码设备和译码设备与流程
  • 一种降低极化码译码时延的方法与流程
  • 视频译码中的子切片的制造方法与工艺
  • 一种极化码迭代接收机、系统和极化码迭代译码方法与流程
  • 一种基于串行抵消列表极化码译码的动态分布排序算法的制造方法与工艺
  • 基于极化码的自适应连续消除译码方法及架构与制造工艺
  • 一种降低存储器消耗的极化码译码方法和系统与制造工艺
译码器相关技术
  • 一种无风扇嵌入式控制器的制造方法与工艺
  • 一种应用于面板安装式控制器的快速安装扣件结构的制造方法与工艺
  • 一种极化码迭代接收机、系统和极化码迭代译码方法与流程
  • 一种基于WIFI的无线寻物系统的制造方法与工艺
  • 一种可编程控制器的制造方法与工艺
  • 视频译码中的语法元素的值范围的制造方法与工艺
  • 用于帧内块复制的块向量译码的制造方法与工艺
  • 用于译码的方法和装置与制造工艺
  • 一种TFT‑LCD控制器的制造方法与工艺
  • 扩展口语对话系统语料库的方法和系统与制造工艺
138译码器相关技术
  • 在多层译码中译码恢复点补充增强信息(sei)消息和区刷新信息sei消息的方法
  • 在多层译码中用于对参考图片集(rps)进行译码的方法
  • 具有新颖的二进制元素译码多标准视频译码器的制造方法
  • 增强安全性的lt码编译码方法
  • 基于算术码与低密度奇偶校验码的迭代联合信源信道译码方法
  • 一种新型译码器装置的制造方法
  • 用于内插视频译码的子像素的值的自适应支持的制作方法
  • 一种确定译码时刻的方法和装置的制造方法
  • 用于内插视频译码的子像素的值的自适应支持的制作方法
  • 一种确定译码时刻的方法和装置的制造方法
维特比译码相关技术
  • 在多层译码中用于对参考图片集(rps)进行译码的方法
  • 用于内插视频译码的子像素的值的自适应支持的制作方法
  • 一种确定译码时刻的方法和装置的制造方法
  • 用于内插视频译码的子像素的值的自适应支持的制作方法
  • 一种确定译码时刻的方法和装置的制造方法
  • 用于确定视频译码块的分区的角落视频部分的方法
  • 一种维特比译码方法及装置的制造方法
  • 基于移位搜索算法的平方剩余码的软判决译码方法
  • 基于多核DSP零尾卷积Viterbi译码的方法及系统的制作方法
  • 一种北斗导航系统的维特比译码装置及方法
三八译码器相关技术
  • 八路信号切换器的制造方法
  • 多入多出天线系统的球形译码的实现方法和装置的制作方法
  • 译码设备及其实现方法
  • 构造数字电视服务数据库的方法及实现该方法的译码器的制作方法
  • 非线性码译码器的实现方法
  • 一种实现霍夫曼译码的方法和装置的制作方法
  • 一种同时实现交织与解交织的Turbo译码器的制作方法
  • 实现软判决fec译码的方法及装置的制作方法
  • Ldpc码译码器及实现方法
  • 多模译码器实现方法及装置制造方法
译码相关技术
  • 一种电平转换与非电路的制造方法与工艺
  • 数据编码存储方法与流程
  • 译码方法、内存储存装置及内存控制电路单元与流程
  • 一种用于轴类端面加工的数控机床的制造方法与工艺
  • 一种数控机床用自动清洁式垫板的制造方法与工艺
  • 一种带有断电保护的节能式数控机床的制造方法与工艺
  • 一种机加工用自动清洁工作台的制造方法与工艺
  • 信道状态信息上报处理方法及装置与流程
  • 传输处理方法及装置与流程
  • 基于深度学习的极化码译码算法的制造方法与工艺

深圳SEO优化公司盐田建站价格保山网络推广哪家好通化建设网站多少钱文山优秀网站设计推荐大芬网站推广系统哪家好陇南网站推广系统哪家好恩施SEO按天收费泰安关键词按天扣费推荐同乐网络营销推荐哈尔滨网站改版多少钱东莞seo网站推广报价石家庄至尊标王唐山网站优化按天计费推荐同乐seo优化报价绥化建站价格铜川外贸网站制作价格雅安模板网站建设报价清徐关键词按天收费报价抚州阿里店铺运营推荐上饶推广网站哪家好福田seo优化报价汕尾网站改版广州网络广告推广迁安外贸网站制作多少钱揭阳网站优化推广报价清远关键词按天计费推荐阿坝高端网站设计报价福州网站定制报价鞍山网站优化按天计费多少钱漯河模板网站建设报价歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化