用于三角高程测量的免整平多棱镜测量装置及测量方法与流程

文档序号:23178239发布日期:2020-12-04 14:08阅读:712来源:国知局
导航: X技术> 最新专利> 测量装置的制造及其应用技术
用于三角高程测量的免整平多棱镜测量装置及测量方法与流程

本发明涉及工程测量装置技术领域,具体地说是一种用于三角高程测量的免整平多棱镜测量装置及测量方法。



背景技术:

随着全站仪的迅速发展,全站仪不仅能够实现高精度的导线测量,在三角高程测量方面也能够满足四等水准的要求。在传统测量中,当全站仪精度已经足够高的情况下,棱镜高量取误差和对中误差占的比重也随之加大。使用传统对中杆立棱镜虽然能够准确量取棱镜杆高度,但是需要对中整平,且其稳定性较差,受外界环境干扰较大,容易造成棱镜杆上端偏离控制点。

期刊文献“中间法测距三角高程测量精度分析研究”,李孟迪,刘丹凤等,2016年第14卷第3期,第146-147页,记载了通过实际检测证实三脚架立棱镜照准精度明显高于对中杆,但是三脚架立棱镜仍需要对中整平,不仅对中整平的速度很慢,而且棱镜高量取误差远大于传统棱镜杆。强制对中基座虽然能够消除棱镜对中误差,但是使用该装置成本过高,且需要一定的时间成本,一般仅用于高精度测量。

期刊文献“中间法电磁波测距三角高程代替精密水准测量的研究”,杨晓明,杨帆等,2012年第37卷第2期,第182-184+172页,提出了测段采用偶数站法消除对中杆的零起点误差,和前后棱镜高相同的方法消除棱镜高量取误差。期刊文献“高精度edm三角高程测量的研究”,许国辉,2002年第10期,第22-24页,记载了一种精密测高法,但是该方法相对操作复杂繁琐,耗费时间长,且不能广泛应用于实际工程中。该方法并不能完全消除上述所有问题。

因此,设计对中整平速度快(甚至不需要对中整平),且不存在棱镜对中误差,通过不需要测量棱镜高,达到消除棱镜高量取误差、棱镜对中误差的目的,对现有技术的改善,具有重要意义。



技术实现要素:

有鉴于此,为克服现有技术所存在的缺陷,本申请提供如下技术方案。

一种用于三角高程测量的免整平多棱镜测量装置,包括棱镜杆、固定在棱镜杆上的至少2个棱镜、与棱镜杆一端连接的支架、与棱镜杆另一端连接的连接组件、以及控制点金属标志;

使用时所述棱镜杆一端通过所述支架插入地面,另一端通过所述连接组件对准所述控制点金属标志,以实现棱镜杆的倾斜固定。

优选地,所述连接组件包括承轴座、连接轴、定位块,所述定位块用于固定所述控制点金属标志;

所述连接轴两端分别通过侧板固定在所述定位块的两侧,所述承轴座与连接轴转动连接,所述承轴座与棱镜杆固定连接,以实现棱镜杆能够相对定位块旋转运动。

优选地,所述承轴座包括轴承和连接板,所述轴承与连接板固定连接,所述连接板与棱镜杆固定连接,所述连接轴穿过轴承。

优选地,所述定位块上设置有凹槽,所述控制点金属标志顶部设置有与所述凹槽相对应的凸起,以使得所述定位块与控制点金属标志固定连接。

优选地,所述定位块具有磁性,能够磁性吸附所述控制点金属标志,以使得所述定位块与控制点金属标志紧密固定连接。

优选地,所述棱镜以可拆卸的方式固定在所述棱镜杆上,且固定在棱镜杆的同侧;

每一所述棱镜对应设置一个觇标,所述觇标位于棱镜的四周,且两者中心重合。

优选地,所述觇标为圆形结构,觇标上设置有穿过棱镜中心、对称布设的放射状觇标条纹,方便瞄准棱镜,提高测量精度。

优选地,所述棱镜为360度棱镜,棱镜套设固定在棱镜杆上,且每一棱镜的特征面朝向均相同。

优选地,所述支架能够相对棱镜杆旋转,通过把手螺旋与所述棱镜杆固定,所述支架连接有可收缩的金属杆,方便调整高度。

上述用于三角高程测量的免整平多棱镜测量装置的测量方法,包括以下步骤:

101、埋点,将选定的点钉入控制点金属标志,保证控制点金属标志铅垂钉入地面;

102、架设仪器,将该测量装置分别架设在全站仪的前视点和/或后视点,棱镜杆一端通过连接组件自动吸附在控制点金属标志上,另一端通过把手螺旋将支架调整到合适的角度,然后将棱镜杆与支架固定连接;通过调整金属杆的高度调整棱镜杆的倾斜度;架设时,保证棱镜面正对全站仪;

103、观测,全站仪对中整平后,使全站仪瞄准棱镜中心或觇标中心进行测量,测量过程需边测量边记录数据,需要使用全站仪测量的数据包括:全站仪与不同棱镜的竖直角α1、α2……αn,全站仪与不同棱镜的斜距s1、s2……sn;

104、校核数据,测量完后应校核不同棱镜组合之间计算出来的结果偏差是否符合要求,不符合应进行重测,符合则搬站至下一测站,并重复步骤102、103、104;

105、整体数据平差处理。

本发明所获得的有益技术效果:

1)本发明解决了现有技术中存在的棱镜高量取误差、棱镜对中误差、棱镜需要整平的问题,本发明实现在不增加额外开销的情况下,消除棱镜高量取误差、棱镜对中误差、减少棱镜对中整平时间,且提高测量精度和测量效率;

2)本发明不需要整平,且对中速度快,极大地提高了工作效率;不需要量取棱镜高,故而不存在棱镜高量取误差,提高了测量精度;

3)本发明中棱镜杆下端通过磁性定位块与控制点金属标志快速且紧密贴合连接,不存在棱镜对中误差,使得架设的棱镜相对于传统测量方法效率更高,精度更高;

4)本发明测量方法主要是通过全站仪测量多个棱镜的距离和角度,通过空间几何关系得到待测地面点与测量棱镜点的数学关系,大大提高了测量精度。

上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,从而可依照说明书的内容予以实施,并且为了让本申请的上述和其他目的、特征和优点能够更明显易懂,以下以本申请的较佳实施例并配合附图详细说明如后。

根据下文结合附图对本申请具体实施例的详细描述,本领域技术人员将会更加明了本申请的上述及其他目的、优点和特征。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。

图1是本公开一种实施例中多棱镜测量装置的结构示意图;

图2是本公开一种实施例中连接组件和控制点金属标志的结构示意图;

图3是本公开一种实施例中定位块和连接轴连接关系的主视图;

图4是本公开一种实施例中定位块和连接轴连接关系的侧视图;

图5是本公开一种实施例中承轴座的主视图;

图6是本公开一种实施例中承轴座的俯视图;

图7是本公开一种实施例中支架和把手螺旋的结构示意图;

图8是本公开一种实施例中把手螺旋的结构示意图;

图9是本公开一种实施例中棱镜杆、觇标、棱镜相对位置关系的侧面图;

图10是本公开一种实施例中觇标、棱镜相对位置关系的侧面图;

图11是本公开另一种实施例中多棱镜测量装置的结构示意图;

图12是本公开另一种实施例中360度棱镜的侧视图;

图13是本公开另一种实施例中360度棱镜的主视图;

图14是本公开该多棱镜测量装置的一种测量简化示意图;

图15是本公开该多棱镜测量装置的另一种测量简化示意图。

在上述附图中:100、棱镜杆;200、棱镜;300、支架;310、金属杆;311、伸缩按键;320、把手螺旋;400、连接组件;410、承轴座;411、轴承;412、连接板;420、连接轴;430、定位块;431、凹槽;440、侧板;500、控制点金属标志;510、凸起;600、觇标;610、觇标条纹;700、固定螺栓;800、全站仪。

具体实施方式

为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。

此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身并不指示所讨论各种实施例和/或设置之间的关系。

还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含。

实施例1

如附图1所示,一种用于三角高程测量的免整平多棱镜测量装置,包括棱镜杆100、固定在棱镜杆100上的至少2个棱镜200、与棱镜杆100一端连接的支架300、与棱镜杆100另一端连接的连接组件400、以及控制点金属标志500。

使用时所述棱镜杆100一端通过所述支架300插入地面,另一端通过所述连接组件400对准所述控制点金属标志500,以实现棱镜杆100的倾斜固定,棱镜杆100稳固性好。

进一步的,所述棱镜杆100为一体结构,不可收缩、拉伸、拆卸,避免测量过程中产生误差,提高测量精度。

如附图2所示,所述连接组件400包括承轴座410、连接轴420、定位块430,所述定位块430用于固定所述控制点金属标志500。

所述定位块430上设置有凹槽431,所述控制点金属标志500顶部设置有与所述凹槽431相对应的凸起510,以使得所述定位块430与控制点金属标志500固定连接。

进一步的,所述凹槽431和所述凸起510均为半球形,能够使得定位块430在与控制点金属标志500紧密连接后处于铅锤状态,有利于提高测量精度。

进一步的,所述定位块430具有磁性,能够磁性吸附所述控制点金属标志500,以使得所述定位块430与控制点金属标志500紧密固定连接。

如附图3和4所示,所述连接轴420两端分别通过侧板440固定在所述定位块430的两侧,所述承轴座410与连接轴420转动连接,所述承轴座410与棱镜杆100固定连接,以实现棱镜杆100能够相对定位块430旋转运动。

如附图5和6所示,所述承轴座410包括轴承411和连接板412,所述轴承411与连接板412固定连接,所述连接板412通过固定螺钉与棱镜杆100固定连接,所述连接轴420穿过轴承411。

在一个实施例中,所述定位块430为磁性圆柱,所述磁性圆柱包括2个u型钢箍和1个凹槽圆柱,2个u型钢箍分别固定在凹槽圆柱的两侧,且2个u型钢箍之间设置有连接轴420,所述连接轴420穿过所述承轴座410的轴承411。

所述凹槽圆柱下端设置有半球状凹槽,所述控制点金属标志500上端为半球形凸起,所述凹槽圆柱具有磁性,能够与控制点金属标志500快速紧密贴合连接,使其不存在棱镜对中误差,能够达到快速对中的目的,与传统测量方法比较,大大提高棱镜架设的效率和精度。

进一步的,参见附图2,所述控制点金属标志500下端为尖状结构,测量时,方便钉入所选控制点地面。

如附图7和8所示,所述支架300设置在所述棱镜杆100顶端,能够相对棱镜杆100旋转,通过把手螺旋320与所述棱镜杆100固定。

所述支架300起支撑作用,由于该装置无需整平,所以在对中之后,将整个装置可以达到快速架设,并保持稳定的作用。

进一步的,所述支架300连接有可收缩的金属杆310,方便调整高度;所述金属杆310的数量为2个或2个以上,每个金属杆310内均设有内伸缩杆,所述内伸缩杆与支架300连接,通过内伸缩杆的伸缩实现支架300高度的调整,以便适应不同的外界测量环境。

进一步的,所述金属杆310上设置有伸缩按键311,通过控制伸缩按键311实现内伸缩杆相对金属杆310的伸缩,从而实现支架300高度的调整。

进一步的,所述伸缩按键311为电动伸缩控制按键或手动旋转控制按键。

所述把手螺旋320上设置有固定螺栓700,所述棱镜杆100顶端设置有与固定螺栓700相对应的螺纹孔,所述支架300顶端设置有通孔,固定时把手螺旋320穿过支架300的通孔,与棱镜杆100顶端的螺纹孔固定连接,以使得支架300与棱镜杆100固定连接。

如附图9和10所示,所述棱镜200以可拆卸的方式固定在所述棱镜杆100上,且所有棱镜200均位于棱镜杆100的同一侧面;每一所述棱镜200对应设置一个觇标600,所述觇标600位于棱镜200的四周,且两者中心重合。

在不需要使用该装置时,可以将棱镜200和觇标600拆卸下来,便于保护棱镜200和觇标600,避免损坏,影响测量精度。

进一步的,所述觇标600为圆形结构,觇标600上设置有穿过棱镜200中心、对称布设的放射状觇标条纹610,用于辅助提高全站仪瞄准棱镜200中心,方便瞄准棱镜200,提高测量精度。

进一步的,所述棱镜200连接有固定螺栓700,棱镜杆100上设置有与固定螺栓700相对应的螺纹孔,安装时,固定螺栓700穿过觇标600与螺纹孔固定连接。

参见附图1,所述棱镜200的为4个,当棱镜200数量小于2时,无解;当棱镜200数量等于2时,有唯一解;当棱镜200数量大于2时,有多个解;设置2个或2个以上数量棱镜200的目的在于防止因视线被遮挡,部分棱镜200无法观测,故而提供多种选择。

在一个实施例中,如附图11所示,所述棱镜200为360度棱镜,棱镜200套设固定在棱镜杆100上,且每一棱镜200的特征面朝向均相同。如附图12和13所示,所述棱镜200每个面的特征不同,安装时保证同一特征面在棱镜杆100上固定的朝向相同,360度棱镜200相对于普通式棱镜,有全方位的观测面,可以多个测站同时进行测量。

进一步的,为了保证测量精度,360度棱镜和棱镜杆100为一个整体,不可拆卸。

实施例2

基于上述实施例1,一种用于三角高程测量的免整平多棱镜测量装置的测量方法,包括以下步骤:

101、埋点,将选定的2个点分别钉入控制点金属标志500,保证控制点金属标志500铅垂钉入地面。埋点位置应考虑是否有大量遮挡物,避免棱镜被遮挡,使得连接组件400与控制点金属标志500连接后处于铅垂状态,以提高测量精度。

102、架设仪器,如附图14所示,将该测量装置分别架设在全站仪800的前视点和后视点,棱镜杆100一端通过连接组件400自动吸附在控制点金属标志500上,另一端通过把手螺旋320将支架300调整到合适的角度,然后将棱镜杆100与支架300固定连接;通过伸缩按键311调整金属杆310的高度,进而调整棱镜杆100的倾斜度,保证至少有两个棱镜能够被观测到;架设时,保证棱镜200面正对全站仪800。

103、观测,全站仪800对中整平后,使全站仪800瞄准棱镜200中心或觇标600中心进行测量,先盘左瞄准后视棱镜组进行测量(至少观测两个棱镜);然后,瞄准前视棱镜组进行测量;接下来,盘右瞄准前视棱镜组进行测量;最后,盘右瞄准后视棱镜组进行测量;测量过程需边测量边记录数据,需要使用全站仪测量的数据包括:全站仪与不同棱镜的竖直角α1、α2……αn,全站仪与不同棱镜的斜距s1、s2……sn;

104、校核数据,测量完后应校核不同棱镜组合之间计算出来的结果偏差是否符合要求,不符合应进行重测,符合则搬站至下一测站,并重复步骤102、103、104;

105、整体数据平差处理。

实施例3

基于上述实施例1,一种用于三角高程测量的免整平多棱镜测量装置的测量方法,包括以下步骤:

101、埋点,将选定的点钉入控制点金属标志500,保证控制点金属标志500铅垂钉入地面。埋点位置应考虑是否有大量遮挡物,避免棱镜被遮挡,使得连接组件400与控制点金属标志500连接后处于铅垂状态,以提高测量精度。

102、架设仪器,先将全站仪800架设至控制点处,然后将该测量装置架设在全站仪800的前视点或后视点,如附图15所示,棱镜杆100一端通过连接组件400自动吸附在控制点金属标志500上,另一端通过把手螺旋320将支架300调整到合适的角度,然后将棱镜杆100与支架300固定连接;通过伸缩按键311调整金属杆310的高度,进而调整棱镜杆100的倾斜度,保证至少有两个棱镜能够被观测到;架设时,保证棱镜200面正对全站仪800。

103、观测,全站仪800对中整平后,使全站仪800瞄准棱镜200中心或觇标600中心进行测量,测量过程需边测量边记录数据,需要使用全站仪测量的数据包括:全站仪与不同棱镜的竖直角α1、α2……αn,全站仪800与不同棱镜的斜距s1、s2……sn;

104、校核数据,测量完后应校核不同棱镜组合之间计算出来的结果偏差是否符合要求,不符合应进行重测,符合则搬站至下一测站,并重复步骤102、103、104;

105、整体数据平差处理。

测量过程中,保证控制点金属标志500上端水平,能够使得定位块430在与其紧密连接后处于铅锤状态,有利于提高测量精度。

在架设多棱镜测量装置时,棱镜200应尽量正对全站仪800,有利于提高测量精度。使用全站仪800进行测量时,当距离过远无法看清棱镜200中心时,应尽量瞄准觇标条纹610,便于提高测量精度。

为了便于计算,不考虑大气折光和地球曲率对高程测量的影响。以第一个棱镜和第二个棱镜为例,根据相似三角定理,由附图15可得:

式中:l表示第一个棱镜中心到棱镜底端承轴的中心距离,该参数已知;l1表示第一个棱镜和第二个棱镜之间的间隔,该参数已知;表示由第一个棱镜和第二个棱镜计算得到的o点到a点的高差,即测站到控制点的高差;a表示轴承中心与凹槽最上端之间的竖直距离,该参数已知;i表示全站仪800的仪器高。

将上式(1)可化简为:

因为ssinα=h,所以上式(2)可化简为:

由上式(3)分析可得,该测量装置相对于传统方法具有以下优点:不需要测量棱镜高,减少了棱镜高量取误差对高差的影响;通过磁性连接装置与控制点金属紧密连接,消除了对中误差对高程的影响;该装置至少有两个棱镜才有解。

计算通解:

由于该装置有多个棱镜,不同棱镜之间可以有不同的组合,于是有不同解,为了便于测量人员数据处理,给出不同组合棱镜之间的通用解算算法。

为了便于计算,将不同棱镜间隔设计为同一长度,即:l1=l2=…=ln-1=ln=l,同理可得单向高差计算通式为:

假设对每个棱镜都进行观测,其单向平均高差为:

式中n表示棱镜数;i,j表示观测的棱镜组合。其单向平均高差应由具体的组合方式计算得到,此处仅提供一种算法。

误差传播分析:

对上式进行全微分可得:

根据误差传播定律可得:

由于s1≈s2,根据全站仪标称精度可得:

式(8)代入式(7),化简可得:

同理可得任意两个棱镜对向观测中误差计算通式为:

其n个棱镜对向观测中误差计算通式为:

假设棱镜数为4,由上式(10)可得公式:

因为上式(12)中项值近似相等,所以其大小由项对比,具体大小为:可以得到结论:两个棱镜间隔越远,其精度越高;当两个棱镜间隔一定时,棱镜越靠近控制点,其精度就越高。

若考虑上述得到的结论,当总的观测次数一定时,那么对两个间隔最远且离控制点最近的棱镜进行观测得到的精度远比所有棱镜(有限棱镜数)观测得到的精度高。那么棱镜数量就不重要了,棱镜的多少仅需考虑在测量中是否能被观测到即可。若最佳观测棱镜被遮挡,可选择观测其余棱镜进行观测,此时的棱镜数量仅被作弥补之用。

以上所述仅为本发明的优选实施例而已,其并非因此限制本发明的保护范围,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,通过常规的替代或者能够实现相同的功能在不脱离本发明的原理和精神的情况下对这些实施例进行变化、修改、替换、整合和参数变更均落入本发明的保护范围内。

完整全部详细技术资料下载
当前第1页 1  2 
相关技术
  • 一种位移监测装置及其使用方法...
  • 一种桥梁桩基托换中墩柱的沉降...
  • 一种长廊沉降监测装置的制作方...
  • 一种钻具接头激光定位系统及控...
  • 多摄像头测距的机器人及视觉测...
  • 基于单目摄像头的距离测定方法...
  • 一种基于图像像素级标定的空间...
  • 天线电轴坐标系标定及指向角度...
  • 一种无线通信基站天线角度测量...
  • 一种水下遥控载具及其姿态检测...
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1
水准尺相关技术
  • 一种高程放样铁质桩的制作方法
  • 一种尺面垂直视线判断器的制造方法
  • 水准仪发光水准尺的制作方法
  • 液压水准测量系统的制作方法
  • 一种便携式水工测量仪的制作方法
  • 一种方便读数的仪表的制作方法
  • 一种新型夜用水准尺的制作方法
  • 一种水平尺的水准泡固定装置的制造方法
  • 带防倾覆三角架的水准仪的制作方法
  • 一种水准仪观测电子显示辅助装置的制造方法
光学经纬仪相关技术
  • 一种小型经纬仪托架之离合锁紧装置的制造方法
  • 光学经纬仪度盘读数照明装置的制造方法
  • 一种用于经纬仪的便于使用的脚手架的制作方法
  • 一种小型经纬仪托架的制作方法
  • 光学邻近修正方法
  • 移动至少一个光学部件的方法
  • 用于光学邻近修正的方法
  • 一种光学消旋装置及其使用方法
  • 一种书法经纬仪的制作方法
  • 光学传感器及使用方法

深圳SEO优化公司网站的seo 优化软件南平网站优化报价网站后端性能优化措施网站内部链接优化工具黄石网站优化多少钱江油网站关键词优化排名全国网站优化的公司宁国网站优化如何做怎么做网站优化批发网站内链优化建设具有何重要意义怎么优化英文网站网站快速优化排名方案网站怎么优化盒纷云速捷给力会同县网站seo优化排名金华推荐网站设计优化闵行区网站优化案例专业网站优化 s呼市网站怎么优化山东临沂网站优化网站建设优化站外优化指哪方面鄂州企业网站优化木工机械网站seo优化专家aso优化推广网站网站可以每天优化吗黄石网站seo站内优化公司郑州济南网站优化企业茂名网站优化排名服务商奉贤南桥网站优化移动端网站怎么优化龙圩区网站seo优化排名歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化