期刊网首页  /  联系我们  /  English
高级检索
  • {{newsColumn.name}}
      1. {{subColumn.name}}

    致密砂岩储层渗透率预测技术研究进展

    downloadPDF

    上一篇

    下一篇

    路萍, 王浩辰, 高春云, 郝昱宇, 谭富荣, 刘杰, 刘伟刚, 白勇, 高建平. 2022. 致密砂岩储层渗透率预测技术研究进展. 地球物理学进展, 37(6): 2428-2438. doi: 10.6038/pg2022FF0236
    引用本文: 路萍, 王浩辰, 高春云, 郝昱宇, 谭富荣, 刘杰, 刘伟刚, 白勇, 高建平. 2022. 致密砂岩储层渗透率预测技术研究进展. 地球物理学进展, 37(6): 2428-2438. doi: 10.6038/pg2022FF0236
    LU Ping, WANG HaoChen, GAO ChunYun, HAO YuYu, TAN FuRong, LIU Jie, LIU WeiGang, BAI Yong, GAO JianPing. 2022. Research progress of permeability prediction technology for tight sandstone reservoirs. Progress in Geophysics, 37(6): 2428-2438. doi: 10.6038/pg2022FF0236
    Citation: LU Ping, WANG HaoChen, GAO ChunYun, HAO YuYu, TAN FuRong, LIU Jie, LIU WeiGang, BAI Yong, GAO JianPing. 2022. Research progress of permeability prediction technology for tight sandstone reservoirs. Progress in Geophysics, 37(6): 2428-2438. doi: 10.6038/pg2022FF0236

    致密砂岩储层渗透率预测技术研究进展

    • 基金项目:

      陕西省自然科学基础研究计划项目(2022JQ-231)和国家重点研发计划项目(2019YFE0100100)联合资助

    详细信息
      作者简介:

      路萍,女,1988年生,博士研究生,主要从事测井解释和机器学习研究. E-mail: lupyyhappy@126.com

      通讯作者: 高春云, 男, 1992年生, 博士, 主要从事测井解释及地震解释研究.E-mail: 214440756@qq.com
    • 中图分类号: P631

    Research progress of permeability prediction technology for tight sandstone reservoirs

    More Information
      Corresponding author: GAO ChunYun, E-mail:  214440756@qq.com
      摘要
    • 对于致密砂岩储层而言,渗透率是评价储层物性、渗流特征的重要参数,也是储层产能挖潜和提高采收率的关键.致密砂岩储层孔隙类型多样,孔隙结构复杂,非均质性强,孔渗关系变化复杂,并非简单的线性关系.利用孔渗统计回归和测井解释方法预测精度较低,致密砂岩储层渗透率预测成为一项重要而艰巨的任务.本研究基于孔喉结构是致密砂岩储层渗透率的主控因素,重点利用毛管压力(MICP)、核磁共振(NMR)、岩心物性实验数据及测井资料,对基于统计回归理论、流体流动单元划分(FZI)储层分类理论、分形几何理论及人工智能理论的渗透率预测方法进行综述.最后指出,基于MICP、NMR及常规测井,将流体流动单元划分(FZI)储层分类技术、分形几何数字岩心技术以及人工智能机器学习技术相结合,可形成一套具有岩石物理学意义的致密砂岩储层渗透率评价和预测的有效方法.

      • 致密砂岩储层  / 
      • 渗透率预测  / 
      • FZI技术  / 
      • 分形几何技术  / 
      • 机器学习技术
    • HTML全文
    • 加载中
    • 图 1 

      NMR实验中关键参数说明

      Figure 1. 

      Determination method of key parameters in NMR experiments

      下载: 全尺寸图片 幻灯片

      图 2 

      基于FZI的渗透率预测流程图

      Figure 2. 

      Flow chart of permeability prediction based on FZI

      下载: 全尺寸图片 幻灯片

      图 3 

      分形维数计算流程图

      Figure 3. 

      Flow chart of fractal dimension calculation

      下载: 全尺寸图片 幻灯片

      图 4 

      机器学习的程序示意图

      Figure 4. 

      Schematic diagram of the machine learning program

      下载: 全尺寸图片 幻灯片

      图 5 

      BP-ANN示意图

      Figure 5. 

      Schematic diagram of BP-ANN

      下载: 全尺寸图片 幻灯片

      图 6 

      高斯过程回归示意图( 知乎,2021)

      Figure 6. 

      Schematic diagram of Gaussian process regression (Zhihu, 2021)

      下载: 全尺寸图片 幻灯片

      图 7 

      集成学习示意图

      Figure 7. 

      Schematic diagram of integrated learning

      下载: 全尺寸图片 幻灯片

      表 1 

      基于MICP和NMR的经典渗透率模型

      Table 1. 

      Classical permeability model based onMICP and NMR

      渗透率模型 表达式 模型所需实验数据
      Winland模型 lgR35=0.732+0.588lgK-0.864lgØ 毛管压力(MICP)
      Swanson模型 毛管压力(MICP)
      W-A模型 毛管压力(MICP)
      Pittman模型 lgRapex=-0.117+0.475lgK-0.099lgØ 毛管压力(MICP)
      SDR模型 K=4T2LM2 核磁共振(NMR)
      Coates模型 核磁共振(NMR)
      下载: 导出CSV
    • 参考文献(95)
    •  

      Al-Anazi A F, Gates I D. 2012. Support vector regression to predict porosity and permeability: effect of sample size. Comput. Geosci., 39: 64-76. doi: 10.1016/j.cageo.2011.06.011

       

      Al-Bulushi N I, King P R, Blunt M J, et al. 2012. Artificial neural networks workflow and its application in the petroleum industry. Neural Comput. Appl., 21(3): 409-421. doi: 10.1007/s00521-010-0501-6

       

      Amaefule J O, Altunbay M, Tiab D, et al. 1993. Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/well. //SPE Annual Technical Conference and Exhibition. Houston, Texas: SPE.

       

      Anifowose F, Labadin J, Abdulraheem A. 2015. Improving the prediction of petroleum reservoir characterization with a stacked generalization ensemble model of support vector machines. Appl. Soft Comput., 26: 483-496. doi: 10.1016/j.asoc.2014.10.017

       

      Bagheripour P. 2014. Committee neural network model for rock permeability prediction. J. Appl. Geophys., 104: 142-148. doi: 10.1016/j.jappgeo.2014.03.001

       

      Bai S T, Cheng D J, Wan J B, et al. 2016. Quantitative characterization of sandstone NMR T2 spectrum. Acta Petrolei Sinica (in Chinese), 37(3): 382-391, 414. doi: 10.1038/aps.2015.120

       

      Baziar S, Tadayoni M, Nabi-Bidhendi M, et al. 2014. Prediction of permeability in a tight gas reservoir by using three soft computing approaches: A comparative study. Journal of Natural Gas Science and Engineering, 21: 718-724. doi: 10.1016/j.jngse.2014.09.037

       

      Ben-Hur A, Horn D, Siegelmann H T, et al. 2002. Support vector clustering. J. Mach. Learn. Res., 2: 125-137.

       

      Bishop C M. 2006. Pattern Recognition and Machine Learning. New York, NY, USA: Springer.

       

      Cheng C, Li P Y, Chen Y, et al. 2022. Research progress of reservoir logging evaluation based on machine learning. Progress in Geophysics (in Chinese), 37(1): 164-177, doi: 10.6038/pg2022FF0031.

       

      Cheng H, Wang F Y, Zai Y, et al. 2020. Prediction of tight sandstone permeability based on high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance(NMR). Lithologic Reservoirs (in Chinese), 32(3): 122-132.

       

      Coates G R, Xiao L Z, Prammer M G. 1999. NMR Logging Principles and Applications. Houston: Gulf Publishing Company.

       

      Da Silva P N, Gonçalves E C, Rios E H, et al. 2015. Automatic classification of carbonate rocks permeability from 1H NMR relaxation data. Expert Systems with Applications, 42(9): 4299-4309. doi: 10.1016/j.eswa.2015.01.034

       

      Dou W C, Liu L F, Jia L B, et al. 2021. Pore structure, fractal characteristics and permeability prediction of tight sandstones: A case study from Yanchang Formation, Ordos Basin, China. Marine and Petroleum Geology, 123: 104737, doi: 10.1016/j.marpetgeo.2020.104737.

       

      Gholami R, Moradzadeh A. 2011. Support vector regression for prediction of gas reservoirs permeability. J. Min. Environ., 2(1): 41-52.

       

      Gholami R, Shahraki A R, Paghaleh M J. 2012. Prediction of hydrocarbon reservoirs permeability using support vector machine. Mathematical Problems in Engineering, 2012: 670723, doi: 10.1155/2012/670723.

       

      Gu Y F, Zhang D Y, Pao Z D, et al. 2021. Permeability prediction using Gradient Boosting Decision Tree (GBDT): a case study of tight sandstone reservoirs of member of Chang 4 + 5 in western Jiyuan Oilfield. Progress in Geophysics (in Chinese), 36(2): 585-594, doi: 10.6038/pg2021EE0216.

       

      Gu Y F, Zhang D Y, Ruan J F, et al. 2022. A new model for permeability prediction in appraisal of petroleum reserves. Progress in Geophysics (in Chinese), 37(2): 588-599, doi: 10.6038/pg2022FF0067.

       

      Gunter G, Finneran J, Hartmann D, et al. 1997. Early determination of reservoir flow units using an integrated petrophysical method. //SPE Annual Technical Conference and Exhibition. San Antonio, Texas: SPE.

       

      Han Y J, Zhou C C, Fan Y R, et al. 2018. A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: A case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East. Petroleum Exploration and Development (in Chinese), 45(1): 170-178.

       

      Hatampour A, Ramzi R, Sedaghat M. 2013. Improving performance of a neural network model by artificial ant colony optimization for predicting permeability of petroleum reservoir rocks. Middle East J. Sci. Res., 13(9): 1217-1223.

       

      He L, Zhao L, Li J X, et al. 2014. Complex relationship between porosity and permeability of carbonate reservoirs and its controlling factors: A case study of platform facies in Pre-Caspian Basin. Petroleum Exploration and Development, 41(2): 225-234. doi: 10.1016/S1876-3804(14)60026-4

       

      He Y D, Mao Z Q, Xiao L Z, et al. 2005. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics (in Chinese), 48(2): 373-378. doi: 10.3321/j.issn:0001-5733.2005.02.020

       

      Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets. Neural Comput., 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527

       

      Huang X B, Zhang Q, Zhu H H, et al. 2017. An estimated method of intact rock strength using Gaussian process regression. //51st US Rock Mechanics/Geomechanics Symposium. San Francisco, California, USA: American Rock Mechanics Association, 392-397.

       

      Huang Y Y, Feng J, Song W, et al. 2020. Improved intelligent prediction method of sandstone reservoir permeability based on NMR transverse relaxation time spectrum and mercury intrusion data. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 42(3): 338-344.

       

      Huang Z H, Shimeld J, Williamson M, et al. 1996. Permeability prediction with artificial neural network modeling in the Venture gas field, offshore eastern Canada. Geophysics, 61(2): 422-436. doi: 10.1190/1.1443970

       

      Iturrarán-Viveros U, Parra J O. 2014. Artificial Neural Networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. J. Appl. Geophys., 107: 45-54. doi: 10.1016/j.jappgeo.2014.05.010

       

      Karimpouli S, Fathianpour N, Roohi J. 2010. A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN). Journal of Petroleum Science and Engineering, 73(3-4): 227-232. doi: 10.1016/j.petrol.2010.07.003

       

      Kenyon W E, Day P I, Straley C, et al. 1988. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation, 3(3): 622-636. doi: 10.2118/15643-PA

       

      Kolodzie S Jr. 1980. Analysis of pore throat size and use of the Waxman-Smits equation to determine Ooip in Spindle Field, Colorado. //SPE Annual Technical Conference and Exhibition. Dallas, Texas: SPE.

       

      Lacentre P E, Carrica P M. 2003. A method to estimate permeability on Uncored wells based on well logs and core data. //SPE Latin American and Caribbean Petroleum Engineering Conference. Port-of-Spain, Trinidad and Tobago: SPE.

       

      Lai J, Wang G W, Luo G X, et al. 2014. A fine logging interpretation model of permeability confined by petrophysical facies of tight gas sandstone reservoirs. Progress in Geophysics (in Chinese), 29(3): 1173-1182, doi: 10.6038/pg2014032.

       

      Li B. 2018. The study of 3D static model and distribution of remaining oil based on flow unit [Ph. D. thesis](in Chinese). Beijing: China University of Geosciences (Beijing).

       

      Li C L, Xu Q Z, Zhang Z B. 2009. A new method on permeability analysis for sand reservoir with specially low permeability by NMR. Well Logging Technology (in Chinese), 33(5): 436-439. doi: 10.3969/j.issn.1004-1338.2009.05.007

       

      Li X Y, Qin R B, Ping H T, et al. 2020. Establishment and application of a high-precision permeability model. Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 44(6): 14-20. doi: 10.3969/j.issn.1673-5005.2020.06.002

       

      Li Y J, Guo H X, Li Y N, et al. 2016. A boosting based ensemble learning algorithm in imbalanced data classification. Systems Engineering - Theory & Practice (in Chinese), 36(1): 189-199.

       

      Liu T Y, Wang S M, Fu R S, et al. 2003. Analysis of rock pore throat structure with NMR spectra. Oil Geophysical Prospecting (in Chinese), 38(3): 328-333. doi: 10.3321/j.issn:1000-7210.2003.03.022

       

      Lucia F J. 1999. Characterization of petrophysical flow units in carbonate reservoirs: Discussion. AAPG Bulletin, 83(7): 1161-1163.

       

      Mahdaviara M, Rostami A, Keivanimehr F, et al. 2021. Accurate determination of permeability in carbonate reservoirs using Gaussian Process Regression. Journal of Petroleum Science and Engineering, 196: 107807, doi: 10.1016/j.petrol.2020.107807.

       

      Mohaghegh S, Arefi R, Ameri S, et al. 1995. Design and development of an artificial neural network for estimation of formation permeability. SPE Comp. Appl., 7(6): 151-154.

       

      Mohammad A. 2012. Estimation of permeability using artificial neural networks and regression analysis in an Iran oil field. Int. J. Phys. Sci., 7(34): 5308-5313.

       

      Nkurlu B M, Shen C B, Asante-Okyere S, et al. 2020. Prediction of permeability using group method of data handling (GMDH) neural network from well log data. Energies, 13(3): 551, doi: 10.3390/en13030551.

       

      Nooruddin H, Anifowose F, Abdulraheem A. 2013. Applying artificial intelligence techniques to develop permeability predictive models using mercury injection capillary-pressure data. //SPE Saudi Arabia Section Technical Symposium and Exhibition. Al-Khobar, Saudi Arabia: SPE.

       

      Pittman E D. 1992. Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone. AAPG Bulletin, 76(2): 191-198.

       

      Plastino A, Gonçalves E C, da Silva P N, et al. 2017. Combining classification and regression for improving permeability estimations from 1H-NMR relaxation data. J. Appl. Geophys., 146: 95-102. doi: 10.1016/j.jappgeo.2017.09.003

       

      Rasmussen C E, Williams C K I. 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). Cambridge, MA, USA: The MIT Press.

       

      Rezaee M R, Jafari A, Kazemzadeh E. 2006. Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks. Journal of Geophysics and Engineering, 3(4): 370-376. doi: 10.1088/1742-2132/3/4/008

       

      Rios E H, de Oliveira Ramos P F, de França Machado V, et al. 2011. Modeling rock permeability from NMR relaxation data by PLS regression. J. Appl. Geophys., 75(4): 631-637. doi: 10.1016/j.jappgeo.2011.09.022

       

      Rumelhart D E, Hinton G E, Williams R J. 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533-536. doi: 10.1038/323533a0

       

      Saxena A, Saad A. 2007. Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems. Appl. Soft Comput., 7(1): 441-454. doi: 10.1016/j.asoc.2005.10.001

       

      Shan W. 2020. A modeling method of carbonate reservoir permeability on NMR and mercury injection data. China's Manganese Industry (in Chinese), 38(2): 25-29.

       

      Shokir E M. 2006. A novel model for permeability prediction in uncored wells. SPE Reservoir Evaluation & Engineering, 9(3): 266-273.

       

      Su J L, Sun J M, Wang T, et al. 2011. An improved method of evaluating reservoir pore structure with nuclear magnetic log data. Journal of Jilin University (Earth Science Edition) (in Chinese), 41(S1): 380-386.

       

      Swanson B F. 1981. A simple correlation between permeabilities and mercury capillary pressures. Journal of Petroleum Technology, 33(12): 2498-2504. doi: 10.2118/8234-PA

       

      Timur A. 1969. Pulsed nuclear magnetic resonance studies of porosity, movable fluid, and permeability of sandstones. Journal of Petroleum Technology, 21(6): 775-786. doi: 10.2118/2045-PA

       

      Wang F Y, Cheng H. 2020. A fractal permeability model for 2D complex tortuous fractured porous media. Journal of Petroleum Science and Engineering, 188: 106938, doi: 10.1016/j.petrol.2020.106938.

       

      Wang F Y, Jiao L, Liu Z C, et al. 2018. Fractal analysis of pore structures in low permeability sandstones using mercury intrusion porosimetry. J. Porous Media, 21(11): 1097-1119. doi: 10.1615/JPorMedia.2018021393

       

      Wang F Y, Jiao L, Lian P Q, et al. 2019. Apparent gas permeability, intrinsic permeability and liquid permeability of fractal porous media: carbonate rock study with experiments and mathematical modelling. Journal of Petroleum Science and Engineering, 173: 1304-1315. doi: 10.1016/j.petrol.2018.10.095

       

      Xiao L, Liu X P, Mao Z Q. 2009. A computation method for reservoir permeability by combining NMR log and capillary pressure data. Acta Petrolei Sinica (in Chinese), 30(1): 100-103. doi: 10.3321/j.issn:0253-2697.2009.01.019

       

      Xiao Z X, Xiao L. 2008. Method to calculate reservoir permeability using nuclear magnetic resonance logging and capillary pressure data. Atomic Energy Science and Technology (in Chinese), 42(10): 868-871.

       

      Yan X Y, Gu H M, Xiao Y F, et al. 2019. XGBoost algorithm applied in the interpretation of tight-sand gas reservoir on well logging data. Oil Geophysical Prospecting (in Chinese), 54(2): 447-455.

       

      Yang K, Wang F Y, Zeng F C, et al. 2020. Permeability prediction based on fractal characteristics of digital rock. Journal of Jilin University (Earth Science Edition) (in Chinese), 50(4): 1003-1011.

       

      Yu B, Yan D D, Li T J. 2008. Digitizing diagram of NMR log to model porosity/permeability calculated with conventional logs. Well Logging Technology (in Chinese), 32(1): 41-44. doi: 10.3969/j.issn.1004-1338.2008.01.012

       

      Yu B M, Cheng P. 2002. A fractal permeability model for bi-dispersed porous media. International Journal of Heat and Mass Transfer, 45(14): 2983-2993. doi: 10.1016/S0017-9310(02)00014-5

       

      Yu H Y, Wang Z L, Rezaee R, et al. 2016. The Gaussian process regression for TOC estimation using wireline logs in shale gas reservoirs. //International Petroleum Technology Conference. Bangkok, Thailand.

       

      Zeng S J, Wu H S, Cai J, et al. 2011. Capillary pressure curve construction and productivity forecast from NMR logging based on reservoir category. Science Technology and Engineering (in Chinese), 11(25): 6041-6044. doi: 10.3969/j.issn.1671-1815.2011.25.010

       

      Zhang G Y, Wang Z Z, Mohaghegh S, et al. 2021. Pattern visualization and understanding of machine learning models for permeability prediction in tight sandstone reservoirs. Journal of Petroleum Science and Engineering, 200: 108142, doi: 10.1016/J.PETROL.2020.108142.

       

      Zhao H W, Ning Z F, Zhao T Y, et al. 2017. Applicability of rate-controlled porosimetry experiment to pore structure characterization of tight oil reservoirs. Fault-Block Oil & Gas Field (in Chinese), 24(3): 413-416.

       

      Zhu L Q, Zhang C, Zhou X Q, et al. 2017. Nuclear magnetic resonance logging reservoir permeability prediction method based on deep belief network and kernel extreme learning machine algorithm. Journal of Computer Applications (in Chinese), 37(10): 3034-3038. doi: 10.11772/j.issn.1001-9081.2017.10.3034

       

      白松涛, 程道解, 万金彬, 等. 2016. 砂岩岩石核磁共振T2谱定量表征. 石油学报, 37(3): 382-391, 414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201603011.htm

       

      程超, 李培彦, 陈雁, 等. 2022. 基于机器学习的储层测井评价研究进展. 地球物理学进展, 37(1): 164-177, doi: 10.6038/pg2022FF0031.

       

      程辉, 王付勇, 宰芸, 等. 2020. 基于高压压汞和核磁共振的致密砂岩渗透率预测. 岩性油气藏, 32(3): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202003012.htm

       

      谷宇峰, 张道勇, 鲍志东, 等. 2021. 利用梯度提升决策树(GBDT)预测渗透率——以姬塬油田西部长4+5段致密砂岩储层为例. 地球物理学进展, 36(2): 585-594, doi: 10.6038/pg2021EE0216.

       

      谷宇峰, 张道勇, 阮金凤, 等. 2022. 一种用于油气储量评估中渗透率预测新模型. 地球物理学进展, 37(2): 588-599, doi: 10.6038/pg2022FF0067.

       

      韩玉娇, 周灿灿, 范宜仁, 等. 2018. 基于孔径组分的核磁共振测井渗透率计算新方法——以中东A油田生物碎屑灰岩储集层为例. 石油勘探与开发, 45(1): 170-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm

       

      何雨丹, 毛志强, 肖立志, 等. 2005. 核磁共振T2分布评价岩石孔径分布的改进方法. 地球物理学报, 48(2): 373-378. doi: 10.3321/j.issn:0001-5733.2005.02.020

       

      黄雨阳, 冯进, 宋伟, 等. 2020. 结合NMR横向弛豫时间谱与压汞资料的砂岩储层改进渗透率智能预测方法. 物探化探计算技术, 42(3): 338-344. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT202003006.htm

       

      赖锦, 王贵文, 罗官幸, 等. 2014. 基于岩石物理相约束的致密砂岩气储层渗透率解释建模. 地球物理学进展, 29(3): 1173-1182, doi: 10.6038/pg2014032.

       

      李兵. 2018. 基于流动单元的精细地质模型和剩余油分布研究[博士论文]. 北京: 中国地质大学(北京).

       

      李潮流, 徐秋贞, 张振波. 2009. 用核磁共振测井评价特低渗透砂岩储层渗透性新方法. 测井技术, 33(5): 436-439. doi: 10.3969/j.issn.1004-1338.2009.05.007

       

      李雄炎, 秦瑞宝, 平海涛, 等. 2020. 高精度渗透率模型的建立与应用. 中国石油大学学报(自然科学版), 44(6): 14-20. doi: 10.3969/j.issn.1673-5005.2020.06.002

       

      李诒靖, 郭海湘, 李亚楠, 等. 2016. 一种基于Boosting的集成学习算法在不均衡数据中的分类. 系统工程理论与实践, 36(1): 189-199. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201601020.htm

       

      刘堂宴, 王绍民, 傅容珊, 等. 2003. 核磁共振谱的岩石孔喉结构分析. 石油地球物理勘探, 38(3): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200303022.htm

       

      单雯. 2020. 基于NMR和压汞资料的碳酸盐岩储层渗透率建模方法. 中国锰业, 38(2): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM202002009.htm

       

      苏俊磊, 孙建孟, 王涛, 等. 2011. 应用核磁共振测井资料评价储层孔隙结构的改进方法. 吉林大学学报(地球科学版), 41(S1): 380-386. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2011S1057.htm

       

      肖亮, 刘晓鹏, 毛志强. 2009. 结合NMR和毛管压力资料计算储层渗透率的方法. 石油学报, 30(1): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901021.htm

       

      肖忠祥, 肖亮. 2008. 基于核磁共振测井和毛管压力的储层渗透率计算方法. 原子能科学技术, 42(10): 868-871. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200810003.htm

       

      闫星宇, 顾汉明, 肖逸飞, 等. 2019. XGBoost算法在致密砂岩气储层测井解释中的应用. 石油地球物理勘探, 54(2): 447-455. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201902024.htm

       

      杨坤, 王付勇, 曾繁超, 等. 2020. 基于数字岩心分形特征的渗透率预测方法. 吉林大学学报(地球科学版), 50(4): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202004007.htm

       

      于滨, 闫栋栋, 李天降. 2008. 用数字化核磁共振测井成果建立孔隙度渗透率模型. 测井技术, 32(1): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200801015.htm

       

      曾少军, 吴洪深, 蔡军, 等. 2011. 基于储层类别构建核磁伪毛管压力曲线及产能预测技术. 科学技术与工程, 11(25): 6041-6044. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201125012.htm

       

      赵华伟, 宁正福, 赵天逸, 等. 2017. 恒速压汞法在致密储层孔隙结构表征中的适用性. 断块油气田, 24(3): 413-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703029.htm

       

      知乎. 2021. https://zhuanlan.zhihu.com/p/413567270.

       

      朱林奇, 张冲, 周雪晴, 等. 2017. 融合深度置信网络与与核极限学习机算法的核磁共振测井储层渗透率预测方法. 计算机应用, 37(10): 3034-3038. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201710054.htm

    • 相关文章
    • 施引文献
    • 资源附件(0)
    • 加载中
    WeChat 点击查看大图

    (7)

    (1)

    计量
    • 文章访问数:  2167
    • PDF下载数:  117
    • 施引文献:  0
    出版历程
    收稿日期:  2022-02-21
    修回日期:  2022-09-19
    刊出日期:  2022-12-20
    PDF  查看

    返回顶部

    目录

      返回文章
      返回

      深圳SEO优化公司临汾关键词按天收费报价观澜营销网站报价山南建设网站推荐运城seo网站优化哪家好鹰潭如何制作网站推荐宜宾网站改版报价黑河关键词按天收费推荐红河seo网站优化绵阳建设网站公司梅州阿里店铺运营推荐海东网站排名优化推荐内江企业网站建设多少钱大同网站改版推荐泸州seo排名保定seo网站优化报价平湖阿里店铺托管嘉兴网站搜索优化价格东莞SEO按天计费价格日照设计网站哪家好襄阳百度竞价包年推广公司桐城网站制作设计哪家好南京网站优化软件价格黔东南关键词按天扣费公司洛阳百姓网标王多少钱曲靖网站制作设计多少钱塘坑百姓网标王推广公司爱联网站改版价格岳阳网站推广工具价格连云港关键词按天计费报价丹东网站推广系统歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

      深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化