期刊网首页  /  联系我们  /  English
高级检索
  • {{newsColumn.name}}
      1. {{subColumn.name}}

    南海海盆东北部内孤立波的地震海洋学研究

    downloadPDF

    上一篇

    下一篇

    范文豪, 宋海斌, 张锟, 许鹤翰, 龚屹, 孙绍箐. 2020. 南海海盆东北部内孤立波的地震海洋学研究. 地球物理学报, 63(7): 2644-2657, doi: 10.6038/cjg2020N0358
    引用本文: 范文豪, 宋海斌, 张锟, 许鹤翰, 龚屹, 孙绍箐. 2020. 南海海盆东北部内孤立波的地震海洋学研究. 地球物理学报, 63(7): 2644-2657, doi: 10.6038/cjg2020N0358
    FAN WenHao, SONG HaiBin, ZHANG Kun, HSU Hohan, GONG Yi, SUN ShaoQing. 2020. Seismic oceanography study of internal solitary waves in the northeastern South China Sea Basin. Chinese Journal of Geophysics (in Chinese), 63(7): 2644-2657, doi: 10.6038/cjg2020N0358
    Citation: FAN WenHao, SONG HaiBin, ZHANG Kun, HSU Hohan, GONG Yi, SUN ShaoQing. 2020. Seismic oceanography study of internal solitary waves in the northeastern South China Sea Basin. Chinese Journal of Geophysics (in Chinese), 63(7): 2644-2657, doi: 10.6038/cjg2020N0358

    南海海盆东北部内孤立波的地震海洋学研究

    • 基金项目:

      国家重点研发计划(2018YFC0310000),全球变化专项国际合作项目(GASI-GEOGE-05)和国家自然科学基金(41976048,41576047)资助

    详细信息
      作者简介:

      范文豪, 男, 1992年生, 主要从事海洋地球物理研究.E-mail: wenhaofan@tongji.edu.cn

      通讯作者: 宋海斌, 教授, 主要从事海洋地球物理与地震海洋学研究.E-mail: hbsong@tongji.edu.cn
    • 中图分类号: P738

    Seismic oceanography study of internal solitary waves in the northeastern South China Sea Basin

    More Information
      Corresponding author: SONG HaiBin, E-mail:  hbsong@tongji.edu.cn
      摘要
    • 以往利用地震海洋学方法发现的内孤立波大多在东沙岛附近,本文在南海海盆东北部首次利用地震海洋学方法发现了海盆中的内孤立波.通过叠前偏移观察该内孤立波细结构的变化,发现内孤立波波形在采集时间段内整体较稳定,内孤立波浅层反射相对深层变化较大.通过改进前人的方法,利用共偏移距道集叠前偏移剖面计算内孤立波视相速度.该方法比直接使用共偏移距道集拟合的共中心点-炮点对曲线线性更好,其计算的内孤立波视相速度为0.82 m·s-1,内孤立波视传播方向为从NW向SE(172°N方向,0°指向北).

      • 地震海洋学  / 
      • 内孤立波  / 
      • 南海海盆  / 
      • 结构特征  / 
      • 传播特征
    • HTML全文
    • 加载中
    • 图 1 

      研究区测线位置分布

      Figure 1. 

      Distribution of multi-channel seismic data

      下载: 全尺寸图片 幻灯片

      图 2 

      改进的内孤立波视相速度计算流程(点划线框中的,虚线框中是 Tang等(2014)的流程)

      Figure 2. 

      The calculation process of improved internal solitary wave apparent phase velocity (in the dash dot box), the process in the dotted box is from Tang et al.(2014)

      下载: 全尺寸图片 幻灯片

      图 3 

      计算内孤立波相速度示意图

      Figure 3. 

      Schematic diagram of the internal solitary waves phase velocity calculation

      下载: 全尺寸图片 幻灯片

      图 4 

      (a) 20号测线内孤立波部分地震叠加剖面(经过叠后FK倾角滤波,只显示了54~98 km的水平范围以及0~1125 m的垂向范围).测线采集时间为2009年4月14日—2009年4月16日;(b)对炮集(2460炮)切除直达波;(c)对CMP道集(CMP 12260)进行动校正,红线标记出了动校拉伸切除位置

      Figure 4. 

      (a) Internal solitary wave part seismic stacked section in line 20 (after post-stack FK dip angle filtering, only the portion of horizontal and vertical ranges of 54~94 km and 0~1125 m, respectively, is shown). Line acquisition time is April 14th—April 16th, 2009; (b) Cut the direct wave on the shot gather (shot 2460); (c) Do NMO on the CMP gather (CMP 12260), and the red line marks the position for cutting the correction stretch

      下载: 全尺寸图片 幻灯片

      图 5 

      20号测线内孤立波振幅随深度变化

      Figure 5. 

      The amplitude of the internal solitary wave varies with depth in line 20

      下载: 全尺寸图片 幻灯片

      图 6 

      (a) T7_39计算的均方根速度; (b) T7_40计算的均方根速度; (c) T7_41计算的均方根速度

      Figure 6. 

      (a) The root mean square velocity calculated by T7_39; (b) The root mean square velocity calculated by T7_40;(c) The root mean square velocity calculated by T7_41

      下载: 全尺寸图片 幻灯片

      图 7 

      (a)、(b)分别是CMP12060的速度谱和拾取的叠加速度; (c)、(d)同(a)、(b)但对应CMP12500

      Figure 7. 

      (a), (b) are the velocity spectrum of CMP12060 and the stacked speed of picking, respectively; (c), (d) are the same as (a), (b) but CMP12500

      下载: 全尺寸图片 幻灯片

      图 8 

      (a) CMP9000-16000范围速度分析得到的层速度; (b) CMP11060_13694范围速度分析得到的层速度,背景是对应的地震叠加剖面

      Figure 8. 

      (a) Layer velocity obtained by CMP9000-16000 range velocity analysis; (b) Layer velocity obtained by CMP11060_13694 range velocity analysis

      下载: 全尺寸图片 幻灯片

      图 9 

      20号测线叠前偏移观察内孤立波细结构变化

      Figure 9. 

      Pre-stack migration of the line 20 is used to observe the fine structure change of the internal solitary wave

      下载: 全尺寸图片 幻灯片

      图 10 

      (a) 利用共偏移距叠前偏移去噪后的剖面拾取内孤立波波谷对应的CMP号; (b)利用共偏移距叠前偏移去噪后的剖面拾取内孤立波波谷对应的炮号; (c)是对COG进行叠前偏移拟合的CMP-炮点对曲线; (d)是直接利用COG拟合的CMP-炮点对曲线

      Figure 10. 

      (a) Pick up the CMP number corresponding to the internal solitary waves trough using the pre-stack migration denoised profile with common offset; (b) Pick up the shot number corresponding to the internal solitary waves trough using the pre-stack migration denoised profile with common offset; (c) The fitting CMP-shot pair curve for pre-stack migration of COG; (d) The fitting CMP-shot pair curve directly with COG

      下载: 全尺寸图片 幻灯片

      图 11 

      (a) KdV计算的线性相速度; (b)不同模态对应的特征函数,其中黑线对应的是第一模态内孤立波,红线对应的是第二模态,绿线是第三模态; (c) KdV拟合内孤立波振幅,黑色线段是内孤立波振幅的垂向变化,红色曲线是使用内孤立波延伸深度(H=1000)获得的理论振幅分布,蓝线曲线是使用海底深度(H=3030 m)获得的理论振幅分布

      Figure 11. 

      (a) The linear phase velocity calculated by KdV; (b) The characteristic function corresponding to different modes, where the black line corresponds to the first mode internal solitary wave, and the red line corresponds to the second mode, the green line is the third mode; (c) is the internal solitary wave amplitude in the KdV fit, the black line segment is the vertical variation of the internal solitary wave amplitude, and the red curve represents the theoretical amplitude acquired using the ISW extension depth (H=1000 m), and the blue line represents the theoretical amplitude distribution acquired using seafloor depth (H=3030 m)

      下载: 全尺寸图片 幻灯片

      图 12 

      20号测线采集时对应的地转流速及海平面高度

      Figure 12. 

      The corresponding geostrophic velocity and sea surface height during the acquisition of the line 20

      下载: 全尺寸图片 幻灯片

      图 13 

      CMEMS物理海洋模型给出的20号测线温度剖面

      Figure 13. 

      The line 20 temperature profile given by the CMEMS physical ocean model

      下载: 全尺寸图片 幻灯片
    • 参考文献(48)
    •  

      Alford M H, Peacock T, MacKinnon J A, et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550):65-69, doi: 10.1038/nature14399.

       

      Bai Y, Song H B, Guan Y X, et al. 2015. Nonlinear internal solitary waves in the northeast South China Sea near Dongsha Atoll using seismic oceanography. Chinese Science Bulletin (in Chinese), 60(10):944-951, doi: 10.1360/N972014-00911.

       

      Bai Y, Song H B, Guan Y X, et al. 2017. Estimating depth of polarity conversion of shoaling internal solitary waves in the northeastern South China Sea. Continental Shelf Research, 143:9-17, doi: 10.1016/j.csr.2017.05.014.

       

      Biescas B, Sallarès V, Pelegri J L, et al. 2008. Imaging meddy finestructure using multichannel seismic reflection data. Geophysical Research Letters, 35(11):L11609, doi: 10.1029/2008GL033971.

       

      Biescas B, Armi L, Sallarès V, et al. 2010. Seismic imaging of staircase layers below the Mediterranean Undercurrent. Deep Sea Research PartI:Oceanographic Research Papers, 57(10):1345-1353, doi: 10.1016/j.dsr.2010.07.001.

       

      Buffett G G, Pelegrí J L, De La Puente J, et al. 2012. Real time visualization of thermohaline finestructure using Seismic Offset Groups. Methods in Oceanography, 3-4:1-13, doi: 10.1016/j.mio.2012.07.003.

       

      Buijsman M C, Kanarska Y, McWilliams J C. 2010. On the generation and evolution of nonlinear internal waves in the South China Sea. Journal of Geophysical Research:Oceans, 115(C2):C02012, doi: 10.1029/2009JC005275.

       

      Chen J X, Song H B, Guan Y X, et al. 2017. A preliminary study of submarine cold seeps applying Seismic Oceanography techniques. Chinese Journal of Geophysics (in Chinese), 60(2):604-616, doi: 10.6038/cjg20170215.

       

      Fer I, Nandi P, Holbrook W S, et al. 2010. Seismic imaging of a thermohaline staircase in the western tropical North Atlantic. Ocean Science, 6(3):621-631, doi: 10.5194/os-6-621-2010.

       

      Geng M H, Song H B, Guan Y X, et al. 2018. Research on the distribution and characteristics of the nepheloid layers in the northern South China Sea by use of seismic oceanography method. Chinese Journal of Geophysics (in Chinese), 61(2):636-648, doi: 10.6038/cjg2018L0662.

       

      Geng M H, Song H B, Guan Y X, et al. 2019. Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data. Deep Sea Research Part I:Oceanographic Research Papers, 146:1-10, doi: 10.1016/j.dsr.2019.02.005.

       

      Guo C, Chen X. 2014. A review of internal solitary wave dynamics in the northern South China Sea. Progress in Oceanography, 121:7-23, doi: 10.1016/j.pocean.2013.04.002.

       

      Helfrich K R, Melville W K. 2006. Long nonlinear internal waves. Annual Review of Fluid Mechanics, 38:395-425, doi: 10.1146/annurev.fluid.38.050304.092129.

       

      Helfrich K R, Grimshaw R H J. 2008. Nonlinear disintegration of the internal tide. Journal of Physical Oceanography, 38(3):686-701, doi: 10.1175/2007JPO3826.1.

       

      Holbrook W S, Fer I. 2005. Ocean internal wave spectra inferred from seismic reflection transects. Geophysical Research Letters, 32(15):L15604, doi: 10.1029/2005GL023733.

       

      Holbrook W S, Fe I, Schmitt R W, et al. 2013. Estimating oceanic turbulence dissipation from seismic images. Journal of Atmospheric and Oceanic Technology, 30(8):1767-1788, doi: 10.1175/JTECH-D-12-00140.1.

       

      Holbrook W S, Páramo P, Pearse S, et al. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling. Science, 301(5634):821-824, doi: 10.1126/science.1085116.

       

      Huang X D, Zhao W, Tian J W, et al. 2014. Mooring observations of internal solitary waves in the deep basin west of Luzon Strait. Acta Oceanologica Sinica, 33(3):82-89, doi: 10.1007/s13131-014-0416-7.

       

      Huang X D, Chen Z H, Zhao W, et al. 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6:30041, doi: 10.1038/srep30041.

       

      Huang X D, Zhang Z W, Zhang X J, et al. 2017. Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. Journal of Physical Oceanography, 47(7):1539-1554, doi: 10.1175/jpo-d-16-0111.1.

       

      Huang X T, Song H B, Guan Y X, et al. 2018. Study of seawater seismic facies based on computational fluid dynamics. Chinese Journal of Geophysics (in Chinese), 61(7):2892-2904, doi: 10.6038/cjg2018L0382.

       

      Jackson C. 2007. Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research:Oceans, 112(C11):C11012, doi: 10.1029/2007jc004220.

       

      Li Q, Farmer D M. 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41(7):1345-1363, doi: 10.1175/2011JPO4587.1.

       

      Li Y C, Cai W L, Li L, et al. 2003. Seasonal and interannual variabilities of mesoscale eddies in northeastern South China Sea. Journal of Tropical Oceanography (in Chinese), 22(3):61-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200303009

       

      Pinheiro L M, Song H B, Ruddick B, et al. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data. Journal of Marine Systems, 79(1-2):89-100, doi: 10.1016/j.jmarsys.2009.07.004.

       

      Ramp S R, Tang T Y, Duda T F, et al. 2004. Internal solitons in the northeastern South China Sea. Part I:sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4):1157-1181, doi: 10.1109/joe.2004.840839.

       

      Ruddick B, Song H B, Dong C Z, et al. 2009. Water column seismic images as maps of temperature gradient. Oceanography, 22(1):192-205, doi: 10.5670/oceanog.2009.19.

       

      Sallares V, Mojica J F, Biescas B, et al. 2016. Characterization of the sub-mesoscale energy cascade in the Alboran Sea thermocline from spectral analysis of high-resolution MCS data. Geophysical Research Letters, 43(12):6461-6468, doi: 10.1002/2016GL069782.

       

      Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 41(11-12):1663-1683, doi: 10.1016/0967-0637(94)90067-1.

       

      Sheen K L, White N J, Hobbs R W. 2009. Estimating mixing rates from seismic images of oceanic structure. Geophysical Research Letters, 36(24):L00D04, doi: 10.1029/2009GL040106.

       

      Sheen K L, White N J, Caulfield C P, et al. 2012. Seismic imaging of a large horizontal vortex at abyssal depths beneath the Sub-Antarctic Front. Nature Geoscience, 5(8):542-546, doi: 10.1038/NGEO1502.

       

      Sheu D D, Chou W C, Chen C T A, et al. 2009. Riding over the Kuroshio from the South to the East China Sea:mixing and transport of DIC. Geophysical Research Letters, 36(7):L07603, doi: 10.1029/2008gl037017.

       

      Sun S Q, Zhang K, Song H B. 2019. Geophysical characteristics of internal solitary waves near the Strait of Gibraltar in the Mediterranean Sea. Chinese Journal of Geophysics (in Chinese), 62(7):2622-2632, doi: 10.6038/cjg2019N0079.

       

      Tang Q S, Zheng C. 2011. Thermohaline structures across the Luzon Strait from seismic reflection data. Dynamics of Atmospheres and Oceans, 51(3):94-108, doi: 10.1016/j.dynatmoce.2011.02.001.

       

      Tang Q S, Wang C X, Wang D X, et al. 2014. Seismic, satellite and site observations of internal solitary waves in the NE South China Sea. Scientific Reports, 4:5374, doi: 10.1038/srep05374.

       

      Tang Q S, Hobbs R, Wang D X, et al. 2015. Marine seismic observation of internal solitary wave packets in the northeast South China Sea. Journal of Geophysical Research:Oceans, 120(12):8487-8503, doi: 10.1002/2015jc011362.

       

      Tang Q S, Hobbs R, Zheng C, et al. 2016. Markov Chain Monte Carlo inversion of temperature and salinity structure of an internal solitary wave packet from marine seismic data. Journal of Geophysical Research:Oceans, 121(6):3692-3709, doi: 10.1002/2016JC011810.

       

      Tang Q S, Xu M, Zheng C, et al. 2018. A locally generated high-mode nonlinear internal wave detected on the shelf of the northern South China Sea from marine seismic observations. Journal of Geophysical Research:Oceans, 123(2):1142-1155, doi: 10.1002/2017JC013347.

       

      Tian J W, Yang Q X, Liang X F, et al. 2006. Observation of Luzon Strait transport. Geophysical Research Letters, 33(19):L19607, doi: 10.1029/2006gl026272.

       

      Tsuji T, Noguchi T, Niino H, et al. 2005. Two-dimensional mapping of fine structures in the Kuroshio Current using seismic reflection data. Geophysical Research Letters, 32(14):L14609, doi: 10.1029/2005GL023095.

       

      Xie J S, He C H, Chen Z W, et al. 2015. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. Journal of Physical Oceanography, 45(12):2959-2978, doi: 10.1175/jpo-d-15-0029.1.

       

      Zhang Z, Fringer O B, Ramp S R. 2011. Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea. Journal of Geophysical Research:Oceans, 116(C5):C05022, doi: 10.1029/2010JC006424.

       

      拜阳, 宋海斌, 关永贤等. 2015.利用地震海洋学方法研究南海东北部东沙海域内孤立波的结构特征.科学通报, 60(10):944-951, doi: 10.1360/N972014-00911.

       

      陈江欣, 宋海斌, 关永贤等. 2017.海底冷泉的地震海洋学初探.地球物理学报, 60(2):604-616, doi: 10.6038/cjg20170215. http://www.geophy.cn//CN/abstract/abstract13456.shtml

       

      耿明会, 宋海斌, 关永贤等. 2018.南海北部雾状层分布和特征的地震海洋学研究.地球物理学报, 61(2):636-648, doi: 10.6038/cjg2018L0662. http://www.geophy.cn//CN/abstract/abstract14362.shtml

       

      黄晞桐, 宋海斌, 关永贤等. 2018.基于流体动力学数值模拟的海水层反射地震研究.地球物理学报, 61(7):2892-2904, doi: 10.6038/cjg2018L0382. http://www.geophy.cn//CN/abstract/abstract14597.shtml

       

      李燕初, 蔡文理, 李立等. 2003.南海东北部海域中尺度涡的季节和年际变化.热带海洋学报, 22(3):61-70. doi: 10.3969/j.issn.1009-5470.2003.03.009

       

      孙绍箐, 张锟, 宋海斌. 2019.地中海直布罗陀海峡附近内孤立波的地球物理特征.地球物理学报, 62(7):2622-2632, doi: 10.6038/cjg2019N0079. http://www.geophy.cn//CN/abstract/abstract15061.shtml

    • 相关文章
    • 施引文献
    • 资源附件(0)
    • 加载中
    WeChat 点击查看大图

    (13)

    计量
    • 文章访问数:  2678
    • PDF下载数:  397
    • 施引文献:  0
    出版历程
    收稿日期:  2019-09-30
    修回日期:  2020-03-26
    上线日期:  2020-07-05
    PDF  查看

    返回顶部

    目录

      返回文章
      返回

      深圳SEO优化公司塔城网站优化按天扣费价格广东优秀网站设计推荐西乡网站制作设计报价永新百度网站优化排名价格坪地百度竞价公司娄底seo网站优化大运网站关键词优化报价阜新网站推广方案哪家好桐城高端网站设计哪家好赤峰网络广告推广报价自贡关键词排名价格韶关网站设计模板报价崇左SEO按天计费价格无锡模板网站建设多少钱安康企业网站设计报价唐山网页设计报价杭州SEO按效果付费雅安百度关键词包年推广多少钱黄石推广网站丹竹头百姓网标王多少钱河源网页制作推荐遵义网站定制哪家好济源网站推广工具推荐三明网络推广哪家好九江优化公司滨州网络广告推广哪家好南平网站排名优化多少钱桐城百度关键词包年推广价格泸州关键词按天扣费哪家好绍兴建网站价格歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

      深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化