搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固态电解质与电极界面的稳定性

冯吴亮 ,  王飞 ,  周星 ,  吉晓 ,  韩福东 ,  王春生

downloadPDF
引用本文:
Citation:
  • 专题:固态电池中的物理问题

固态电解质与电极界面的稳定性

冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生

Stability of interphase between solid state electrolyte and electrode

Feng Wu-Liang, Wang Fei, Zhou Xing, Ji Xiao, Han Fu-Dong, Wang Chun-Sheng
  • 摘要
  • 图表
  • 参考文献(93)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    相比于有机体系锂离子电池, 全固态锂金属电池有望同时提高电池安全性和能量密度, 因而受到广泛的研究和关注. 固态电解质的电化学窗口决定了电解质在高压电池充放电过程中是否保持稳定. 目前的固态电解质, 热力学稳定电化学窗口较窄, 限制了其与高电压正极以及锂金属负极的匹配. 因而能否形成动力学稳定的界面, 决定了全固态电池是否能够持续高效工作. 本文总结归纳了固态电解质的热力学稳定窗口的实验和理论计算研究进展, 并对提高界面稳定性的实验进展进行了简述. 在此基础上, 提出构建动力学稳定性界面及防止锂枝晶的思路, 并展望了全固态电池界面构建的研究方向.
      关键词:
    • 全固态电解质 / 
    • 电化学窗口 / 
    • 界面稳定性 / 
    • 全固态电池 

    Abstract

    Compared with the lithium-ion battery based on the non-aqueous electrolyte, all-solid-state lithium battery has received much attention and been widely studied due to its superiority in both safety and energy density. The electrochemical window of solid electrolyte determines whether the electrolyte remains stable during the cycling of the high-voltage battery. Current solid electrolytes typically have narrow electrochemical windows, thereby limiting their coupling with high voltage cathodes and lithium metal anode. Therefore, the formation of the stable interphase determines the stabilities of the all-solid-state batteries. Here in this work, both the experimental and theoretical progress of the electrochemical stability window of solid-state electrolytes are summarized. Besides, the experimental achievements in improving the stability of the interphase are also mentioned. On this basis, the strategies of constructing dynamically stable interphase and preventing the lithium dendrite branch crystal from forming are put forward. The future research direction of the interphase construction in all-solid-state batteries is also presented.
      Keywords:
    • all-solid-state electrolyte / 
    • electrochemical windows / 
    • interface stability / 
    • all-solid-state batteries 

    作者及机构信息

      通信作者: 王飞, feiw@fudan.edu.cn ; 王春生, cswang@umd.edu

    Authors and contacts

      Corresponding author: Wang Fei, feiw@fudan.edu.cn ; Wang Chun-Sheng, cswang@umd.edu

    文章全文 : translate this paragraph

    参考文献

    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928 Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1 Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652 Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019 Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167 Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219 Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56 Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513 Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945 Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682 Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778 Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775 Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780 Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428 Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016 Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685 Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277 Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534 Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008 Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473 Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342 Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590 Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276 Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524 Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503 Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208 Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259 Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119 Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707 Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2 Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029 Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9 Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016 Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510 Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035 Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764 Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91 Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258 Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042 Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24 Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572 Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565 Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853 Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243 Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90 Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192 Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44 Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179 Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454 Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414 Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771 Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127 Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939 Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404 Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138 Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888 Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883 Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21 Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750 Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328 Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171 Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98 Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1 Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609 Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929 Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011 Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071 Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458 Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115 Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212 Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719 Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075 Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665 Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412 Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431 Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764 Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842 Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53 Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497 Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972 Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105 Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212 Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486 Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610 Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190 Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7 Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015 Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261 Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73 Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418 Google Scholar

    施引文献

  • 图 1  (a) 传统固体电解质的循环扫描伏安法测试装置示意图; (b) LGPS[ 22], (c) LLZO[ 24]以及(d) Li2OHCl[ 31]电解质传统CV测试曲线

    Fig. 1.  (a) Schematic diagram of conventional cyclic scanning voltammetry device for solid-state electrolyte; CV testing curves for (b) LGPS[ 22], (c) LLZO[ 24] and Li2OHCl[ 31] solid-state electrolyte.

    下载: 全尺寸图片 幻灯片

    图 2  电解质电化学窗口测试装置结构示意图

    Fig. 2.  Schematic diagram of the testing device for the electrochemical stability window.

    下载: 全尺寸图片 幻灯片

    图 3  三类电解质/电极界面化学稳定性示意图

    Fig. 3.  Schematic diagram of chemical stability of the three kinds of electrolyte/electrode interfaces.

    下载: 全尺寸图片 幻灯片

    图 4  (a) 氮化硼(BN)中间层稳定LATP/Li[ 37]与(b) LiF中间层稳定LPSCl/Li[ 38]界面示意图

    Fig. 4.  Schematic diagram of the (a) LATP/Li interface stabilization by BN[ 37] and (b) LPSCl/Li interface stabilization by LiF[ 38], respectively.

    下载: 全尺寸图片 幻灯片

    图 5  分别使用铟和固体电解质/C复合材料作为对电极和工作电极, 对Li10GeP2S12进行循环伏安(0.1 mV·s–1)测试图[ 62]

    Fig. 5.  CV curve (0.1 mV·s–1) of Li10GeP2S12 with Indium counter electrode and solid electrolyte/C composites working electrode[ 62].

    下载: 全尺寸图片 幻灯片

    图 6  (a) 活性物质循环过程中体积应变对正极界面接触的影响以及低杨氏模量中间层维持界面牢固接触示意图; (b) 负极界面锂剥离态导致间隙的产生以及加压或合金支架维持界面接触示意图.

    Fig. 6.  (a) Schematic diagram of the effect of volume changes of the active materials during charge/discharge on the contact of cathode interface, and solid contact maintenance by low Young's modulus interlayer; (b) schematic diagram of the gap generated by Li stripping and solid contact maintenance by pressure or alloy frameworks.

    下载: 全尺寸图片 幻灯片

    图 7  基于材料数据库的热力学计算 (a)相稳定性: 被研究的亚稳态γ相能量与同成分下热力学平衡相的能量差(energy above hull)是衡量γ相稳定性的重要指标之一; (b) 巨电势相图(grand potential phase diagram): 衡量相稳定性在不同环境(比如对锂电位)下的变化; (c) 界面稳定性: 两相在不同比例时的二元相图及其相应的热力学反应焓变

    Fig. 7.  Schematic illustrations of thermodynamic calculations: (a) Schematic of an energy convex hull, indicating the energy above hull Ehull of a metastable γ phase and its decomposition reaction into the phase equilibria; (b) schematic of a GPPD, illustrating the evolution of phase equilibria under changing Li chemical potential mLi and an applied voltage 4; (c) mutual reaction energy versus composition of a pseudo-binary composed of LiCoO2 and Li3PS4. The star corresponds to the predicted phase equilibria with decomposition enthalpy DHD at the mixing ratio.

    下载: 全尺寸图片 幻灯片

    表 1  各类固体电解质电化学窗口的理论计算值与报道值概括

    Table 1.  Summary of the theoretical calculations and the reported values of electrochemical windows for different solid-state electrolytes.

    电解质/SEI理论计算值/V实验值/V测试方法
    LiF0—6.36[ 16]
    Li2S0—2.01[ 17]
    Li3N0—0.44[ 18]0—0.9[ 19]Li/液体电解质/Li3N-C-PTFE
    70Li2S-30P2S52.28—2.31[ 17]0—5[ 20]Li/LPS/不锈钢
    Li6PS5Cl1.71—2.01[ 17]0—7[ 21]Li/LPS/不锈钢
    1.25—2.5[ 15]Li-In/ LPSC/LPSC-C
    Li10GeP2S121.71—2.14[ 17]0—5[ 22]Li/LGPS/Au
    1—2.7[ 23]Li/LGPS/LGPS-C/Pt
    Li7La3Zr2O120.05—2.91[ 17]0—6[ 24]Li/LLZO/Au
    0—4[ 25]Li/LLZO/LLZO-C/Pt
    Li1.5Al0.5Ge1.5(PO4)32.7—4.27[ 17]0—6[ 26]Li/LAGP/Pt
    LiPON0.68—2.63[ 17]0—5.5[ 27]Li/LiPON/Pt
    下载: 导出CSV

    表 2  常见固态电解质、正极材料以及界面修饰层的杨氏模量

    Table 2.  The Young’s modulus of the conventional solid-state electrolytes, cathodes and interface modification layers.

    LLZOLPSLi2OHClLiMn2O4LiFePO4石墨AlGeSiZnO
    E/GPa150[ 12]19[ 69]7.8[ 70]100[ 71]124[ 72]27[ 73]69[ 73]80[ 73]107[ 73]135[ 73]
    下载: 导出CSV

    深圳SEO优化公司延安百度关键词包年推广推荐榆林网站搜索优化推荐茂名推广网站价格南澳网站搜索优化清徐关键词按天计费哪家好南充网络推广菏泽外贸网站建设哪家好孝感百度标王公司广州网络推广哪家好商丘品牌网站设计多少钱朝阳外贸网站设计多少钱沙井网站推广系统多少钱廊坊网站定制哪家好辽阳百度关键词包年推广莱芜企业网站建设昌吉SEO按效果付费报价枣庄网站关键词优化哪家好松原网站推广工具价格亳州网站优化排名推荐泉州网站优化按天计费多少钱长治百度竞价报价恩施外贸网站制作宁德网站搜索优化推荐泉州网络广告推广哪家好亳州模板制作价格合肥SEO按天计费公司周口网站搜索优化莱芜关键词按天扣费黄南英文网站建设推荐哈尔滨优秀网站设计公司歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

    深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Nature 334 928 Google Scholar

    [2]

    Janek J, Zeier W G 2016 Nat. Energy 1 1 Google Scholar

    [3]

    Armand M, Tarascon J M 2008 Nature 451 652 Google Scholar

    [4]

    Goodenough J B 2012 J. Solid State Electrochem. 16 2019 Google Scholar

    [5]

    Soloveichik G L 2014 Nature 505 163

    [6]

    Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y 2019 ACS Sustainable. Chem. Eng. 7 19167 Google Scholar

    [7]

    Pang Y, Wang X, Shi X, Xu F, Sun L, Yang J, Zheng S 2020 Adv. Energy Mater. 10 1809219 Google Scholar

    [8]

    López-Aranguren P, Berti N, Dao A H, Zhang J, Cuevas F, Latroche M, Jordy C 2017 J. Power Sources 357 56 Google Scholar

    [9]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J G 2014 Energy Environ. Sci. 7 513 Google Scholar

    [10]

    Zhang Z, Shao Y, Lotsch B, Hu Y S, Li H, Janek J, Nazar L F, Nan C W, Maier J, Armand M, Chen L 2018 Energy Environ. Sci. 11 1945 Google Scholar

    [11]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A 2011 Nat. Mater. 10 682 Google Scholar

    [12]

    Murugan R, Thangadurai V, Weppner W 2007 Angew. Chem. Int. Ed. Engl. 46 7778 Google Scholar

    [13]

    Jena A, Meesala Y, Hu S F, Chang H, Liu R S 2018 ACS Energy Lett. 3 2775 Google Scholar

    [14]

    Du M, Liao K, Lu Q, Shao Z 2019 Energy Environ. Sci. 12 1780 Google Scholar

    [15]

    Schwietert T K, Arszelewska V A, Wang C, Yu C, Vasileiadis A, de Klerk N J J, Hageman J, Hupfer T, Kerkamm I, Xu Y, van der Maas E, Kelder E M, Ganapathy S, Wagemaker M 2020 Nat. Mater. 19 428 Google Scholar

    [16]

    Nolan A M, Zhu Y, He X, Bai Q, Mo Y 2018 Joule 2 2016 Google Scholar

    [17]

    Zhu Y, He X, Mo Y 2015 ACS Appl. Mater. Interfaces 7 23685 Google Scholar

    [18]

    Rabenau A 1982 Solid State Ionics 6 277 Google Scholar

    [19]

    Park K, Yu B C, Goodenough J B 2016 Adv. Energy Mater. 6 1502534 Google Scholar

    [20]

    Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M 2014 Energy Environ. Sci. 7 627

    [21]

    Boulineau S, Courty M, Tarascon J M, Viallet V 2012 Solid State Ionics 221 1.1016/j.ssi.2012.06.008 Google Scholar

    [22]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nature Materials 10 682

    [23]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473 Google Scholar

    [24]

    Ohta S , Tetsuro; Asaoka, Takahiko 2011 J. Power Sources 196 3342 Google Scholar

    [25]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590 Google Scholar

    [26]

    Feng J K, Yan B G, Liu J C, Lai M O, Li L 2013 Mater. Technol. 28 276 Google Scholar

    [27]

    Yu X, Bates J B, Jellison G E, Hart F X 1997 J. Electrochem. Soc. 144 524 Google Scholar

    [28]

    Xu K 2014 Chem. Rev. 114 11503 Google Scholar

    [29]

    Mo Y, Ong S P, Ceder G 2014 Chem. Mater. 26 5208 Google Scholar

    [30]

    Vardar G, Bowman W J, Lu Q, Wang J, Chater R J, Aguadero A, Seibert R, Terry J, Hunt A, Waluyo I, Fong D D, Jarry A, Crumlin E J, Hellstrom S L, Chiang Y M, Yildiz B 2018 Chem. Mater. 30 6259 Google Scholar

    [31]

    Li Y, Zhou W, Xin S, Li S, Zhu J, Lu X, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough J B 2016 Angew. Chem. Int. Ed. Engl. 128 10119 Google Scholar

    [32]

    Swamy T, Chen X, Chiang Y M 2019 Chem. Mater. 31 707 Google Scholar

    [33]

    Liu H, Ren Z, Zhang X, Hu J, Gao M, Pan H, Liu Y 2019 Chem. Mater. 32 2 Google Scholar

    [34]

    Das S, Ngene P, Norby P, Vegge T, de Jongh P E, Blanchard D 2016 J. Electrochem. Soc. 163 A2029 Google Scholar

    [35]

    Zhu Y, Connell J G, Tepavcevic S, Zapol P, Garcia‐Mendez R, Taylor N J, Sakamoto J, Ingram B J, Curtiss L A, Freeland J W, Fong D D, Markovic N M 2019 Adv. Energy Mater. 9 Google Scholar

    [36]

    Yan K, Lee H W, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y 2014 Nano Lett. 14 6016 Google Scholar

    [37]

    Cheng Q, Li A, Li N, Li S, Zangiabadi A, Li T D, Huang W, Li A C, Jin T, Song Q, Xu W, Ni N, Zhai H, Dontigny M, Zaghib K, Chuan X, Su D, Yan K, Yang Y 2019 Joule 3 1510 Google Scholar

    [38]

    Zhao F, Sun Q, Yu C, Zhang S, Adair K, Wang S, Liu Y, Zhao Y, Liang J, Wang C, Li X, Li X, Xia W, Li R, Huang H, Zhang L, Zhao S, Lu S, Sun X 2020 ACS Energy Lett. 5 1035 Google Scholar

    [39]

    Alexander G V, Patra S, Sobhan Raj S V, Sugumar M K, Ud Din M M, Murugan R 2018 J. Power Sources 396 764 Google Scholar

    [40]

    Feng W, Dong X, Li P, Wang Y, Xia Y 2019 J. Power Sources 419 91 Google Scholar

    [41]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L 2016 J. Am. Chem. Soc. 138 12258 Google Scholar

    [42]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L 2017 Adv. Mater. 29 1606042 Google Scholar

    [43]

    He M, Cui Z, Chen C, Li Y, Guo X 2018 J. Mater. Chem. A 6 24 Google Scholar

    [44]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L 2017 Nat. Mater. 16 572 Google Scholar

    [45]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L 2017 Nano Lett. 17 565 Google Scholar

    [46]

    Lu Y, Huang X, Ruan Y, Wang Q, Kun R, Yang J, Wen Z 2018 J. Mater. Chem. A 6 18853 Google Scholar

    [47]

    Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y 2019 Adv. Mater. 31 1807243 Google Scholar

    [48]

    Takano A, Oikawa I, Kamegawa A, Takamura H 2016 Solid State Ionics 285 90 Google Scholar

    [49]

    Yoshida K, Suzuki S, Kawaji J, Unemoto A, Orimo S I 2016 Solid State Ionics 285 192 Google Scholar

    [50]

    Xiang M, Zhang Y, Zhu Y, Guo X, Chen J, Li L 2018 Solid State Ionics 280 44 Google Scholar

    [51]

    Takahashi K, Maekawa H, Takamura H 2014 Solid State Ionics 262 179 Google Scholar

    [52]

    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C 2018 Sci. Adv. eaau92454 Google Scholar

    [53]

    Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B 2018 Nano Lett. 18 7414 Google Scholar

    [54]

    Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough J B 2017 Angew. Chem. Int. Ed. Engl. 129 771 Google Scholar

    [55]

    Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X 2020 Energy Environ. Sci. 13 127 Google Scholar

    [56]

    Hu B, Yu W, Xu B, Zhang X, Liu T, Shen Y, Lin Y H, Nan C W, Li L 2019 ACS Appl. Mater. Interfaces 11 34939 Google Scholar

    [57]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy Environ. Sci. 12 1404 Google Scholar

    [58]

    Banerjee A, Tang H, Wang X, Cheng J H, Nguyen H, Zhang M, Tan D H S, Wynn T A, Wu E A, Doux J M, Wu T, Ma L, Sterbinsky G E, D'Souza M S, Ong S P, Meng Y S 2019 ACS Appl. Mater. Interfaces 11 43138 Google Scholar

    [59]

    Zhang W, Leichtweiss T, Culver S P, Koerver R, Das D, Weber D A, Zeier W G, Janek J 2017 ACS Appl. Mater. Interfaces 9 35888 Google Scholar

    [60]

    Auvergniot J, Cassel A, Ledeuil J-B, Viallet V, Seznec V, Dedryvère R 2017 Chem. Mater. 29 3883 Google Scholar

    [61]

    Park K, Yu B-C, Jung J-W, Li Y, Zhou W, Gao H, Son S, Goodenough J B 2016 Chem. Mater. 28 21 Google Scholar

    [62]

    Koerver R, Walther F, Aygün I, Sann J, Dietrich C, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 22750 Google Scholar

    [63]

    Dewald G F, Ohno S, Kraft M A, Koerver R, Till P, Vargas-Barbosa N M, Janek J, Zeier W G 2019 Chem. Mater. 31 8328 Google Scholar

    [64]

    Maier J 1995 Prog. Solid State Chem. 23 171 Google Scholar

    [65]

    Takada K, Ohno T, Ohta N, Ohnishi T, Tanaka Y 2017 ACS Energy Lett. 3 98 Google Scholar

    [66]

    Cheng Z, Liu M, Ganapathy S, Li C, Li Z, Zhang X, He P, Zhou H, Wagemaker M 2020 Joule 4 1 Google Scholar

    [67]

    de Klerk N J J, Wagemaker M 2018 ACS Appl. Energy Mater. 1 5609 Google Scholar

    [68]

    Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber D A, Sann J, Zeier W G, Janek J 2017 J. Mater. Chem. A 5 9929 Google Scholar

    [69]

    McGrogan F P S, Tushar B, S R, Eggleton E P L, Chen X W, Chiang Y M, Van V, Krystyn J 2017 Adv. Energy Mater. 7 1602011 Google Scholar

    [70]

    Feng W, Lai Z, Dong X, Li P, Wang Y, Xia Y 2020 iScience 23 101071 Google Scholar

    [71]

    Frank P McGrogan, Shilpa, N R, Yet-Ming Chiang, Krystyn J V V 2018 J. Electrochem. Soc. 165 A2458 Google Scholar

    [72]

    Meethong N, Huang H Y S, Speakman S A, Carter W C, Chiang Y M 2007 Adv. Funct. Mater. 17 1115 Google Scholar

    [73]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212 Google Scholar

    [74]

    Schlem R, Muy S, Prinz N, Banik A, Shao H Y, Zobel M, Zeier W G 2019 Adv. Energy Mater. 10 1903719 Google Scholar

    [75]

    Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A, Hasegawa S 2018 Adv. Mater. 30 1803075 Google Scholar

    [76]

    Li X, Liang J, Luo J, Norouzi Banis M, Wang C, Li W, Deng S, Yu C, Zhao F, Hu Y, Sham T K, Zhang L, Zhao S, Lu S, Huang H, Li R, Adair K R, Sun X 2019 Energy Environ. Sci. 12 2665 Google Scholar

    [77]

    Hansel C, Afyon S, Rupp J L 2016 Nanoscale 8 18412 Google Scholar

    [78]

    Yan X, Li Z, Wen Z, Han W 2017 J. Phys. Chem. C 121 1431 Google Scholar

    [79]

    Kim K H, Iriyama Y, Yamamoto K, Kumazaki S, Asaka T, Tanabe K, Fisher C A J, Hirayama T, Murugan R, Ogumi Z 2011 J. Power Sources 196 764 Google Scholar

    [80]

    Miara L, Windmuller A, Tsai C L, Richards W D, Ma Q, Uhlenbruck S, Guillon O, Ceder G 2016 ACS Appl. Mater. Interfaces 8 26842 Google Scholar

    [81]

    Ohta S, Komagata S, Seki J, Saeki T, Morishita S, Asaoka T 2013 J. Power Sources 238 53 Google Scholar

    [82]

    Han F, Yue J, Chen C, Zhao N, Fan X, Ma Z, Gao T, Wang F, Guo X, Wang C 2018 Joule 2 497 Google Scholar

    [83]

    Ohzuku T, Ueda A 1994 J. Electrochem. Soc. 141 A2972 Google Scholar

    [84]

    Kasemchainan J, Zekoll S, Spencer J D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105 Google Scholar

    [85]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C, Xiao R 2016 J. Chin. Phys. B 25 018212 Google Scholar

    [86]

    Ohta N, Takada K, Sakaguchi I, Zhang L, Ma R, Fukuda K, Osada M, Sasaki T 2007 Electrochem. Commun. 9 1486 Google Scholar

    [87]

    Ito Y, Sakurai Y, Yubuchi S, Sakuda A, Hayashi A, Tatsumisago M 2015 J. Electrochem. Soc. 162 A1610 Google Scholar

    [88]

    Jung S H, Oh K, Nam Y J, Oh D Y, Brüner P, Kang K, Jung Y S 2018 Chem. Mater. 30 8190 Google Scholar

    [89]

    Woo J H, Trevey J E, Cavanagh A S, Choi Y S, Kim S C, George S M, Oh K H, Lee S H 2012 J. Electrochem. Soc. 159 A7 Google Scholar

    [90]

    Wang C, Liang J, Jiang M, Li X, Mukherjee S, Adair K, Zheng M, Zhao Y, Zhao F, Zhang S, Li R, Huang H, Zhao S, Zhang L, Lu S, Singh C V, Sun X 2020 Nano Energy 76 105015 Google Scholar

    [91]

    Wang C, Li X, Zhao Y, Banis M N, Liang J, Li X, Sun Y, Adair K R, Sun Q, Liu Y 2019 Small Methods 3 1900261 Google Scholar

    [92]

    Sakuda A, Hayashi A, Ohtomo T, Hama S, Tatsumisago M 2010 Electrochem. Solid State Lett. 13 A73 Google Scholar

    [93]

    Tan D H S, Wu E A, Nguyen H, Chen Z, Marple M A T, Doux J M, Wang X, Yang H, Banerjee A, Meng Y S 2019 ACS Energy Lett. 4 2418 Google Scholar

  • [1] 耿晓彬, 李顶根, 徐波.  固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi:  10.7498/aps.72.20230824
    [2] 杨源, 胡乃方, 金永成, 马君, 崔光磊.  富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi:  10.7498/aps.72.20230258
    [3] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波.  Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi:  10.7498/aps.72.20221808
    [4] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英.  阳离子调控对卤化物固态电解质性能的改善. 物理学报, 2022, 71(20): 208201. doi:  10.7498/aps.71.20221050
    [5] 吴成伟, 谢国锋, 周五星.  全固态锂离子电池内部热输运研究前沿. 物理学报, 2022, 71(2): 026501. doi:  10.7498/aps.71.20211887
    [6] 陆敬予, 柯承志, 龚正良, 李德平, 慈立杰, 张力, 张桥保.  原位表征技术在全固态锂电池中的应用. 物理学报, 2021, 70(19): 198102. doi:  10.7498/aps.70.20210531
    [7] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠.  锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi:  10.7498/aps.70.20202214
    [8] 邢丽丹, 谢启明, 李伟善.  电解液及其界面电化学性质的机理研究进展. 物理学报, 2020, 69(22): 228205. doi:  10.7498/aps.69.20201553
    [9] 张桥保, 龚正良, 杨勇.  硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi:  10.7498/aps.69.20201581
    [10] 余启鹏, 刘琦, 王自强, 李宝华.  全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi:  10.7498/aps.69.20201218
    [11] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳.  富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi:  10.7498/aps.69.20201227
    [12] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩.  石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi:  10.7498/aps.69.20201533
    [13] 拱越, 谷林.  全固态电池中界面的结构演化和物质输运. 物理学报, 2020, 69(22): 226801. doi:  10.7498/aps.69.20201160
    [14] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁.  玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi:  10.7498/aps.66.168501
    [15] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁.  基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi:  10.7498/aps.65.178501
    [16] 郭文昊, 肖惠, 门传玲.  SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi:  10.7498/aps.64.077302
    [17] 刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊.  氦对铜钨纳米多层膜界面稳定性的影响. 物理学报, 2012, 61(17): 176802. doi:  10.7498/aps.61.176802
    [18] 王志军, 王锦程, 杨根仓.  各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi:  10.7498/aps.57.1246
    [19] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi.  单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi:  10.7498/aps.53.3978
    [20] 林 鑫, 李 涛, 王琳琳, 苏云鹏, 黄卫东.  单相合金凝固过程时间相关的界面稳定性(I)理论分析. 物理学报, 2004, 53(11): 3971-3977. doi:  10.7498/aps.53.3971
目录
  • 第69卷,第22期 - 2020年11月20日
计量
  • 文章访问数:  16442
  • PDF下载量:  976
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 修回日期:  2020-11-07
  • 上网日期:  2020-11-23
  • 刊出日期:  2020-11-20

/

返回文章
返回

深圳SEO优化公司延安百度关键词包年推广推荐榆林网站搜索优化推荐茂名推广网站价格南澳网站搜索优化清徐关键词按天计费哪家好南充网络推广菏泽外贸网站建设哪家好孝感百度标王公司广州网络推广哪家好商丘品牌网站设计多少钱朝阳外贸网站设计多少钱沙井网站推广系统多少钱廊坊网站定制哪家好辽阳百度关键词包年推广莱芜企业网站建设昌吉SEO按效果付费报价枣庄网站关键词优化哪家好松原网站推广工具价格亳州网站优化排名推荐泉州网站优化按天计费多少钱长治百度竞价报价恩施外贸网站制作宁德网站搜索优化推荐泉州网络广告推广哪家好亳州模板制作价格合肥SEO按天计费公司周口网站搜索优化莱芜关键词按天扣费黄南英文网站建设推荐哈尔滨优秀网站设计公司歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化