搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲调制条件下介质阻挡特高频放电特性的数值模拟

高书涵 ,  王绪成 ,  张远涛

downloadPDF
引用本文:
Citation:

脉冲调制条件下介质阻挡特高频放电特性的数值模拟

高书涵, 王绪成, 张远涛

Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers

Gao Shu-Han, Wang Xu-Cheng, Zhang Yuan-Tao
  • 摘要
  • 图表
  • 参考文献(35)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    大气压条件下, 引入脉冲调制是一种有效地提高射频放电稳定性的方法. 已有的研究表明, 当电源频率提高到甚高频乃至特高频频段的时候, 在脉冲调制条件下射频放电会表现出新的放电现象与放电规律. 本文借助于流体模型, 研究了当电源频率提高至500 MHz, 脉冲调制条件下介质阻挡放电的放电特性. 数值计算表明, 在电压开启的第一个周期内的正负半周期会各出现一次大电流放电的现象, 瞬时阳极鞘层的电场结构及介质表面电荷对该现象的产生具有重要影响; 并深入研究了占空比、调制频率与电压调制比对该大电流脉冲的影响, 以及大电流脉冲在放电从脉冲调制状态过渡到连续状态逐渐消失的过程. 本研究将对深入理解脉冲调制参数对介质阻挡放电的影响起到积极作用.
      关键词:
    • 大气压放电 / 
    • 介质阻挡放电 / 
    • 流体模拟 / 
    • 脉冲调制 / 
    • 鞘层电场 

    Abstract

    Pulse-modulated discharge is an effective way to improve the stability of radio-frequency (rf) discharges. Previous studies have shown that with the power frequency increasing to the ultra-high frequency (UHF) band, the introduction of pulse modulation in rf discharges will bring about new discharge behaviors. In this paper, the fluid model is adopted to numerically investigate the new discharge characteristics in dielectric barrier discharges (DBDs) with the rf frequency larger than 500 MHz. A very large current peak occurs in the first positive and negative half cycle during the power-on phase, respectively. The spatial structure of electric field is given to further understand the underpinning physics of the large current peaks. Furthermore, the effects of duty cycle, modulation frequency and voltage modulation rates on the large current peaks are examined based on the computational data. This numerical study will deepen the understanding of DBDs modulated by pulses in the UHF band.
      Keywords:
    • atmospheric plasmas / 
    • dielectric barrier discharge / 
    • fluid model / 
    • pulse modulation / 
    • sheath structure 

    作者及机构信息

      通信作者: 张远涛, ytzhang@sdu.edu.cn
    • 基金项目: 国家级-大气压等离子体与细胞相互作用的理论研究(11675095)

    Authors and contacts

      Corresponding author: Zhang Yuan-Tao, ytzhang@sdu.edu.cn

    文章全文 : translate this paragraph

    参考文献

    [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15 Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322 Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505 Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504 Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950 Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274 Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782 Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503 Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391 Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302 Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018 Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639 Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8 Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307 Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015 Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502 Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511 Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008 Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503 Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505 Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505 Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402 Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124 Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705 Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14 Google Scholar

    [27]

    王艳辉, 王德真 2003 物理学报 52 1694 Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508 Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 物理学报 54 4808 Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808 Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949 Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547 Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001 Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495 Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304 Google Scholar

    施引文献

  • 图 1  调制频率为6.25 MHz, 电压为800 V, 占空比为60%时脉冲调制的介质阻挡电流脉冲波形

    Fig. 1.  Temple evolution of current densities in DBDs with a modulation frequency of 6.25 MHz, voltage amplitude of 800 V and duty cycle of 60%.

    下载: 全尺寸图片 幻灯片

    图 2  调制频率为6.25 MHz, 电压为800 V时, 占空比从10%到100%的脉冲调制电流密度波形

    Fig. 2.  Temporal evolution of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various duty cycles from 10% to 100%.

    下载: 全尺寸图片 幻灯片

    图 3  双电流脉冲正负峰值及稳定后的电流脉冲峰值随占空比的变化曲线

    Fig. 3.  Peak values of current densities as a function of duty cycle at a given modulation frequency and voltage amplitude.

    下载: 全尺寸图片 幻灯片

    图 4  正电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Fig. 4.  Spatial distribution of electric fields at the moment when the positive current density reaches the top value for various duty cycles.

    下载: 全尺寸图片 幻灯片

    图 5  正电流脉冲峰值时刻电子密度(实线)与离子密度(虚线)随占空比的变化曲线

    Fig. 5.  Spatial profiles of electron density (solid line) and ion density (dash line) at the instant when the positive current density reaches the peak value for various duty cycles.

    下载: 全尺寸图片 幻灯片

    图 6  负电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Fig. 6.  Spatial distribution of the electric fields at the moment when the negative current density reaches the top value for various duty cycles.

    下载: 全尺寸图片 幻灯片

    图 7  电压为600 V, 占空比为60%时, 调制频率从6.25 MHz到50 MHz的脉冲调制电流密度波形

    Fig. 7.  Temporal evolution of current densities at a given voltage amplitude of 600 V and duty cycle of 60% for various modulation frequencies from 6.25 MHz to 50 MHz

    下载: 全尺寸图片 幻灯片

    图 8  电压为800 V, 占空比为60%时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随调制频率的变化曲线

    Fig. 8.  Peak values of current densities as a function of modulation frequency at a given applied voltage of 800 V and duty cycle of 60%.

    下载: 全尺寸图片 幻灯片

    图 9  调制频率为6.25 MHz, 电压为800 V时, 电压调制比从0 (对应电压为0)到1.0(对应电压为800 V)的脉冲调制电流密度波形

    Fig. 9.  Temporal evolutions of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various voltage modulated rates from 0 to 1.0.

    下载: 全尺寸图片 幻灯片

    图 10  调制频率为6.25 MHz, 电压为800 V时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随电压调制比的变化曲线

    Fig. 10.  Peak values of current densities as a function of voltage modulated rates at a given modulate frequency of 6.25 MHz and voltage amplitude of 800 V.

    下载: 全尺寸图片 幻灯片

    深圳SEO优化公司锦州百度竞价哪家好盐田推广网站公司池州关键词按天计费报价无锡外贸网站制作哪家好丽江网站推广方案报价荷坳seo网站推广报价日照网站改版多少钱平顶山网站优化排名哪家好自贡外贸网站制作报价那曲阿里店铺运营龙岩阿里店铺托管公司永州网站设计模板哪家好阜阳seo优化哪家好布吉企业网站改版公司辽阳模板网站建设多少钱福州外贸网站制作多少钱杭州seo排名黑河网站优化按天计费周口营销型网站建设推荐海东设计网站公司固原百度竞价价格飞来峡网站优化哪家好济南百姓网标王推广报价抚顺网站设计模板多少钱湘潭至尊标王哪家好潜江网站改版哪家好呼和浩特关键词按天计费防城港百姓网标王价格南联网站推广多少钱防城港网站建设价格歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

    深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15 Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322 Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505 Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504 Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950 Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274 Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782 Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503 Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391 Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302 Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018 Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639 Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8 Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307 Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015 Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502 Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511 Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008 Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503 Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505 Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505 Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402 Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124 Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705 Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14 Google Scholar

    [27]

    王艳辉, 王德真 2003 物理学报 52 1694 Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508 Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 物理学报 54 4808 Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808 Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949 Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547 Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001 Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495 Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304 Google Scholar

  • [1] 刘凯, 方泽, 戴栋.  正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究. 物理学报, 2023, 72(13): 135201. doi:  10.7498/aps.72.20230385
    [2] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦.  霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi:  10.7498/aps.72.20230680
    [3] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁.  射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, 2022, 71(24): 245202. doi:  10.7498/aps.71.20221361
    [4] 艾飞, 刘志兵, 张远涛.  结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, 2022, 71(24): 245201. doi:  10.7498/aps.71.20221555
    [5] 胡艳婷, 张钰如, 宋远红, 王友年.  相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi:  10.7498/aps.67.20181400
    [6] 赵凯, 牟宗信, 张家良.  同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi:  10.7498/aps.63.185208
    [7] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪.  较大体积的大气压空气介质阻挡放电特性研究. 物理学报, 2013, 62(16): 165205. doi:  10.7498/aps.62.165205
    [8] 戴栋, 王其明, 郝艳捧.  大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, 2013, 62(13): 135204. doi:  10.7498/aps.62.135204
    [9] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊.  大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi:  10.7498/aps.61.245205
    [10] 董丽芳, 李树峰, 范伟丽.  介质阻挡放电丝结构转变中的缺陷研究. 物理学报, 2011, 60(6): 065205. doi:  10.7498/aps.60.065205
    [11] 邵先军, 马跃, 李娅西, 张冠军.  低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi:  10.7498/aps.59.8747
    [12] 郝艳捧, 阳林, 涂恩来, 陈建阳, 朱展文, 王晓蕾.  实验研究大气压多脉冲辉光放电的模式和机理. 物理学报, 2010, 59(4): 2610-2616. doi:  10.7498/aps.59.2610
    [13] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳.  介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, 2008, 57(2): 1001-1007. doi:  10.7498/aps.57.1001
    [14] 尹增谦, 万景瑜, 黄明强, 王慧娟.  介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi:  10.7498/aps.56.7078
    [15] 王艳辉, 王德真.  介质阻挡均匀大气压氮气放电特性研究. 物理学报, 2006, 55(11): 5923-5929. doi:  10.7498/aps.55.5923
    [16] 董丽芳, 毛志国, 冉俊霞.  氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, 2005, 54(7): 3268-3272. doi:  10.7498/aps.54.3268
    [17] 王艳辉, 王德真.  大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, 2005, 54(3): 1295-1300. doi:  10.7498/aps.54.1295
    [18] 张远涛, 王德真, 王艳辉.  大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi:  10.7498/aps.54.4808
    [19] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方.  介质阻挡放电中微放电的映射方程. 物理学报, 2003, 52(4): 929-934. doi:  10.7498/aps.52.929
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙.  大气压介质阻挡放电中的自组织斑图结构. 物理学报, 2002, 51(10): 2296-2301. doi:  10.7498/aps.51.2296
目录
  • 第69卷,第11期 - 2020年06月05日
计量
  • 文章访问数:  5360
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2020-03-05
  • 刊出日期:  2020-06-05

/

返回文章
返回

深圳SEO优化公司锦州百度竞价哪家好盐田推广网站公司池州关键词按天计费报价无锡外贸网站制作哪家好丽江网站推广方案报价荷坳seo网站推广报价日照网站改版多少钱平顶山网站优化排名哪家好自贡外贸网站制作报价那曲阿里店铺运营龙岩阿里店铺托管公司永州网站设计模板哪家好阜阳seo优化哪家好布吉企业网站改版公司辽阳模板网站建设多少钱福州外贸网站制作多少钱杭州seo排名黑河网站优化按天计费周口营销型网站建设推荐海东设计网站公司固原百度竞价价格飞来峡网站优化哪家好济南百姓网标王推广报价抚顺网站设计模板多少钱湘潭至尊标王哪家好潜江网站改版哪家好呼和浩特关键词按天计费防城港百姓网标王价格南联网站推广多少钱防城港网站建设价格歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化