回归:预测燃油效率

33 篇文章 1 订阅
订阅专栏

在这里插入图片描述

回归:预测燃油效率

在一个回归问题中,我们的目标是预测一个连续值的输出,比如价格或概率。这与一个分类问题形成对比,我们的目标是从一系列类中选择一个类(例如,一张图片包含一个苹果或一个橘子,识别图片中的水果)。

本笔记本使用经典的[auto-mpg]( https://archive.ics.uci.edu/ml/datasets/auto+mpg)数据集,建立了预测70年代末和80年代初汽车燃油效率的模型。为了做到这一点,我们将为该模型提供从那个时期开始的许多汽车的描述。此描述包括以下属性:气缸、排量、马力和重量。

此示例使用“tf.keras”API,有关详细信息,请参阅[本指南]( https://www.tensorflow.org/guide/keras)。


import pathlib
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import keras
from keras import layers
%matplotlib inline

The Auto MPG dataset

The dataset is available from the UCI Machine Learning Repository.

Get the data

First download the dataset.

dataset_path = keras.utils.get_file("auto-mpg.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data")
dataset_path
'C:\\Users\\YIUYE\\.keras\\datasets\\auto-mpg.data'

Import it using pandas

column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight',
                'Acceleration', 'Model Year', 'Origin'] 
raw_dataset = pd.read_csv(dataset_path, names=column_names,
                      na_values = "?", comment='\t',
                      sep=" ", skipinitialspace=True)

dataset = raw_dataset.copy()
dataset.tail()
MPGCylindersDisplacementHorsepowerWeightAccelerationModel YearOrigin
39327.04140.086.02790.015.6821
39444.0497.052.02130.024.6822
39532.04135.084.02295.011.6821
39628.04120.079.02625.018.6821
39731.04119.082.02720.019.4821

Clean the data

The dataset contains a few unknown values.

dataset.isnull().sum()
MPG             0
Cylinders       0
Displacement    0
Horsepower      6
Weight          0
Acceleration    0
Model Year      0
Origin          0
dtype: int64

To keep this initial tutorial simple drop those rows.

dataset = dataset.dropna()

The "Origin" column is really categorical, not numeric. So convert that to a one-hot:

origin = dataset.pop('Origin')
dataset['USA'] = (origin == 1)*1.0
dataset['Europe'] = (origin == 2)*1.0
dataset['Japan'] = (origin == 3)*1.0
dataset.tail()
MPGCylindersDisplacementHorsepowerWeightAccelerationModel YearUSAEuropeJapan
39327.04140.086.02790.015.6821.00.00.0
39444.0497.052.02130.024.6820.01.00.0
39532.04135.084.02295.011.6821.00.00.0
39628.04120.079.02625.018.6821.00.00.0
39731.04119.082.02720.019.4821.00.00.0

现在将数据集拆分为一个训练集和一个测试集。

我们将在模型的最终评估中使用测试集。

train_dataset = dataset.sample(frac=0.8,random_state=0)
test_dataset = dataset.drop(train_dataset.index)
sns.pairplot(train_dataset[[ "Cylinders", "Displacement", "Weight"]], diag_kind="kde")
sns.set()

在这里插入图片描述

Also look at the overall statistics:

train_stats = train_dataset.describe()
train_stats.pop("MPG")
train_stats = train_stats.transpose()
train_stats
countmeanstdmin25%50%75%max
Cylinders314.05.4777071.6997883.04.004.08.008.0
Displacement314.0195.318471104.33158968.0105.50151.0265.75455.0
Horsepower314.0104.86942738.09621446.076.2594.5128.00225.0
Weight314.02990.251592843.8985961649.02256.502822.53608.005140.0
Acceleration314.015.5592362.7892308.013.8015.517.2024.8
Model Year314.075.8980893.67564270.073.0076.079.0082.0
USA314.00.6242040.4851010.00.001.01.001.0
Europe314.00.1783440.3834130.00.000.00.001.0
Japan314.00.1974520.3987120.00.000.00.001.0

Split features from labels

Separate the target value, or “label”, from the features. This label is the value that you will train the model to predict.

train_labels = train_dataset.pop('MPG')
test_labels = test_dataset.pop('MPG')

Normalize the data

Look again at the train_stats block above and note how different the ranges of each feature are.

规范化使用不同尺度和范围的特征是一个很好的实践。虽然模型可能在没有特征规范化的情况下收敛,但它使训练变得更加困难,并且使生成的模型依赖于输入中使用的单元的选择。

注意:尽管我们有意只从训练数据集生成这些统计信息,但这些统计信息也将用于规范化测试数据集。我们需要这样做,以将测试数据集投影到模型所训练的相同分发中。

def norm(x):
  return (x - train_stats['mean']) / train_stats['std']
normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)
def build_model():
  model = keras.Sequential([
    layers.Dense(64, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
    layers.Dense(64, activation=tf.nn.relu),
    layers.Dense(1)
  ])

  optimizer = keras.optimizers.RMSprop(0.001)

  model.compile(loss='mean_squared_error',
                optimizer=optimizer,
                metrics=['mean_absolute_error', 'mean_squared_error'])
  return model
model = build_model()
model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_10 (Dense)             (None, 64)                640       
_________________________________________________________________
dense_11 (Dense)             (None, 64)                4160      
_________________________________________________________________
dense_12 (Dense)             (None, 1)                 65        
=================================================================
Total params: 4,865
Trainable params: 4,865
Non-trainable params: 0
_________________________________________________________________

Now try out the model. Take a batch of 10 examples from the training data and call model.predict on it.

example_batch = normed_train_data[:10]
example_result = model.predict(example_batch)
example_result
array([[-0.03468257],
       [-0.01342154],
       [-0.15384783],
       [-0.18010283],
       [ 0.03922582],
       [-0.12172151],
       [ 0.10603201],
       [ 0.2442987 ],
       [ 0.00099315],
       [ 0.18530795]], dtype=float32)

It seems to be working, and it produces a result of the expected shape and type.

Train the model

Train the model for 1000 epochs, and record the training and validation accuracy in the history object.

# Display training progress by printing a single dot for each completed epoch
class PrintDot(keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs):
    if epoch % 100 == 0: print('')
    print('.', end='')

EPOCHS = 1000

history = model.fit(
  normed_train_data, train_labels,
  epochs=EPOCHS, validation_split = 0.2, verbose=0,
  callbacks=[PrintDot()])
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
....................................................................................................
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
lossmean_absolute_errormean_squared_errorval_lossval_mean_absolute_errorval_mean_squared_errorepoch
9952.0755180.9409432.0755188.9137262.3518398.913726995
9962.1301110.9535612.1301119.7698842.4382829.769884996
9972.2210400.9512582.2210409.6647082.3828889.664708997
9982.3018700.9804072.3018709.9343112.4255059.934311998
9992.0025800.8876442.0025809.4849822.4147429.484982999
def plot_history(history):
  hist = pd.DataFrame(history.history)
  hist['epoch'] = history.epoch
  
  plt.figure()
  plt.xlabel('Epoch')
  plt.ylabel('Mean Abs Error [MPG]')
  plt.plot(hist['epoch'], hist['mean_absolute_error'],
           label='Train Error')
  plt.plot(hist['epoch'], hist['val_mean_absolute_error'],
           label = 'Val Error')
  plt.ylim([0,5])
  plt.legend()
  
  plt.figure()
  plt.xlabel('Epoch')
  plt.ylabel('Mean Square Error [$MPG^2$]')
  plt.plot(hist['epoch'], hist['mean_squared_error'],
           label='Train Error')
  plt.plot(hist['epoch'], hist['val_mean_squared_error'],
           label = 'Val Error')
  plt.ylim([0,20])
  plt.legend()
  plt.show()


plot_history(history)

在这里插入图片描述

在这里插入图片描述

此图显示在大约100个周期后,验证错误几乎没有改善,甚至恶化。让我们更新“model.fit”调用,以便在验证分数没有提高时自动停止培训。我们将使用一个早期的回调来测试每个时代的训练条件。如果一个设定的时间段没有显示出改善,那么自动停止训练。

model = build_model()

# The patience parameter is the amount of epochs to check for improvement
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)

history = model.fit(normed_train_data, train_labels, epochs=EPOCHS,
                    validation_split = 0.2, verbose=0, callbacks=[early_stop, PrintDot()])

plot_history(history)
.................................................

在这里插入图片描述

在这里插入图片描述

loss, mae, mse = model.evaluate(normed_test_data, test_labels, verbose=0)

print("Testing set Mean Abs Error: {:5.2f} MPG".format(mae))
Testing set Mean Abs Error:  1.79 MPG

Make predictions

Finally, predict MPG values using data in the testing set:

test_predictions = model.predict(normed_test_data).flatten()

plt.scatter(test_labels, test_predictions)
plt.xlabel('True Values [MPG]')
plt.ylabel('Predictions [MPG]')
plt.axis('equal')
plt.axis('square')
plt.xlim([0,plt.xlim()[1]])
plt.ylim([0,plt.ylim()[1]])
_ = plt.plot([-100, 100], [-100, 100])

在这里插入图片描述

error = test_predictions - test_labels
plt.hist(error, bins = 25)
plt.xlabel("Prediction Error [MPG]")
_ = plt.ylabel("Count")

在这里插入图片描述

它不是很高斯的,但是我们可以预期,因为样本的数量非常小。

汽车燃油效率:汽车的燃油效率
02-15
手动变速箱比自动变速箱更省油吗? 对32 1973-74型美国汽车的数据进行了分析,以确定手动或自动变速箱是否更省油,并确定省油的最佳先决条件。 我使用回归方法-线性回归,多元回归和嵌套似然检验来发现,在固定汽车重量下,手动和自动变速器车辆的燃油效率没有差异。 燃油效率主要取决于汽车的重量和气缸数。 重要的是要注意,这些结论仅适用于这组特定的汽车,即1973-74年的美国模型汽车,并不一定始终适用于所有模型的汽车。 数据 1974年汽车趋势杂志 守则及指示 Auto-FuelEfficiency.md是讨论问题,我的方法并显示数字和结果的文档。 Auto-FuelEfficiency.Rmd包含用于生成文档的代码,该代码用于执行嵌入在其中的计算。 可以下载并编织它以复制输出文档。 需要软件包ggplot2来生成数字。
python使用梯度下降算法实现一个多线性回归
菜鸟教程
01-07 960
更多编程教程请到:菜鸟教程 https://www.piaodoo.com/ 友情链接: 高州阳光论坛https://www.hnthzk.com/ 人人影视http://www.sfkyty.com/ python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下 图示: import pandas as pd import matplotlib.pylab as plt import numpy as np # Read data
【MATLAB】史上最全的15种回归预测算法全家桶
最新发布
Lwcah的博客
02-20 2238
大家吃一顿火锅的价格便可以拥有15种回归预测算法,绝对不亏,知识付费是现今时代的趋势,而且都是我精心制作的教程,有问题可随时反馈~也可单独获取某一算法的代码(见每一算法介绍后文)~
Seurat -- Normalize Data
jiangshandaiyou的博客
04-25 1241
首先RC这种normalization.method我们就不考虑了,和LogNormalize比较你可以发现LogNormalize 之前做的就是RC然后做了log转化。log转化让方差稳定而且非正态的数据近似于正态分布了。最主要要比较的是CLR和LogNormalize,CLR称为中心对数转化,具体原理和算法需要技术文档帮助,这里不写了。我读到这里才发现改函数还会对原始的counts数据进行矫正,然后放到。上述构建的seurat object。
[Python] Normalize the data with Pandas
weixin_34115824的博客
12-17 199
import os import pandas as pd import matplotlib.pyplot as plt def test_run(): start_date='2017-01-01' end_data='2017-12-15' dates=pd.date_range(start_date, end_data) # Cre...
Tensorflow2.0学习(六) — 线性回归模型(燃油效率预测
Yohann的博客
11-21 1931
这一节开始主要讲述Tensorflow官方提供的样例代码,我会对其中一些代码部分进行修改并且详细解释大部分代码的意思,方便初学的朋友们学习。这节课我们要完成的是一个线性回归模型的搭建及Auto MPG数据集的预测,顺便附上官方代码的链接:https://tensorflow.google.cn/tutorials/keras/regression。 这一节我们使用的数据集为Auto MPG数据集...
预测车辆燃油效率
weixin_26636643的博客
08-19 244
My previous posts focused on the application of machine learning and neural networks in datasets from the oil industry. These efforts gave me the confidence to successfully implement XGBoost and artif...
简单线性回归与多元线性回归实例--预测汽车的燃油效率
08-04 4101
文章目录一、具体实现步骤1.导入数据2.探究数据关系3.提取数据4.拆分数据5.训练模型二、可视化结果展示1.训练集2. 测试集3.计算模型得分三、多元线性回归1.训练模型2.计算得分3.可视化预测结果 ------【机器学习第1天:线性回归(代码篇)】------ ------【机器学习第2天:线性回归(理论篇)】------ 写再前面: 这篇文章将通过线性回归模型预测汽车的燃油效率,文本所用到的数据以及代码可根据文末的联系方式向我索取 一、具体实现步骤 1.导入数据 import pandas as
回归项目实战:预测燃油效率 (tensorflow2.0官方教程翻译)
马上学人工智能
06-05 1470
最全TensorFlow2.0学习路线 www.mashangxue123.com 在回归问题中,我们的目标是预测连续值的输出,如价格或概率。 将此与分类问题进行对比,分类的目标是从类列表中选择一个类(例如,图片包含苹果或橙色,识别图片中的哪个水果)。 本章节采用了经典的Auto MPG 数据集,并建立了一个模型来预测20世纪70年代末和80年代初汽车的燃油效率。为此,我们将为该模型提供该时段...
用来处理回归数据_常用的回归预测算法解析
weixin_39642622的博客
12-08 1289
回归是一种通过建模和分析变量之间关系的的方法,其目的是通过模型来计算得出一个具体的值。回归模型有两种,一种是可以用一条回归线拟合的数据,有明显的函数关系,可以通过线性性回归等方式进行拟合;第二种就是无明显线性关系,这时候就认为长得相似的样本值也相同。常用算法如下:一、线性回归(一)原理回归分析用来确定两种或两种以上变量间相互依赖的定量关系,其表达形式为y = w'x+e,其中只有一个自变量的情况称...
demonstration_app:燃油效率和传动分析
06-29
该应用程序使用 t 检验和回归分析来探索燃油效率与汽车变速器(自动或手动)之间的关系。 它探讨了两个问题: MPG 是自动变速器还是手动变速器更好? 量化自动和手动变速器之间的 MPG 差异该应用程序由两个文件组成...
FuelEfficencyML:根据汽车的属性预测汽车的燃油效率
04-08
燃油效率ML 根据汽车的属性预测汽车的燃油效率
add-oil-aid:燃油效率计算器和燃油成本估算器
05-12
这是使用Cordova的Android /其他设备的燃油效率计算器和燃油成本估算器。 建立Android APK: cordova build android 在调试device: cordova run android 去做: 研究科尔多瓦生成的APK为什么约为50Mb(由于...
Jeti_FuelSensor:Jeti燃油传感器
04-29
Jeti_FuelSensor Jeti燃油传感器Jeti燃油传感器代码Jeti传感器值: 消费燃油流量用户可校准更多信息: : 根据MIT许可由Tero Salminen(c)RC-Thoughts 2017-2018分享
Should I normalize/standardize/rescale the data
zhangxiaojiakele的博客
02-25 278
简要描述:该文章成为较早, 2002年,神经学习,深度学习这十多年已经经历了非常迅速的演进,新算法层出不穷,但关于神经网络的很多基础问题仍然是不变的.我在搜索关于是否对数据集进行标准化相关回答时找到了这篇文章,觉的回答相等不错,因此特将这篇文章转载至此.由于原文涉及非常多的内容,因此因此并未贴出原文,以下提供了网页版和pdf版两个链接地址.其中网页版中缺乏部分文内超链接,大家可以下载pdf版本查看...
数据标准化 Data Normalization
热门推荐
sunlilan的博客
05-09 3万+
在一些实际问题中,我们得到的样本数据都是多个维度的,即一个样本是用多个特征来表征的。比如在预测房价的问题中,影响房价y的因素有房子面积x1、卧室数量x2等。这里的x1,x2又被称为特征。很显然,这些特征的量纲和数值得量级都是不一样的,在预测房价时,如果直接使用原始的数据值,那么他们对房价的影响程度将是不一样的,而通过标准化处理,可以使得不同的特征具有相同的尺度(Scale)。
Tensorflow2.*教程之使用Auto MPG数据集构建回归模型预测燃油率(4)
机器学习,深度学习
05-08 5083
学习和理解本文章的要求: 有数理统计的知识 有矩阵论的知识 有图像分析和处理知识 有Python编程基础 有机器学习和深度学习理论支撑 本教程适合有机器学习,深度学习基础的人员学习。如果没有上面储备知识,可能学起来会吃力,有些概念可能听起来很玄学。 Keras 机器学习基础知识文章链接: 对服装图像进行分类 使用Tensorflow Hub对未处理的电影评论数据集IMDB进...
线性回归实战之分析汽车油耗效率8.18
Angeliaaa的博客
08-18 1219
任务要求: 根据不同配置下的汽车使用一加仑的汽油跑的公里数这一数据,来预测一下不同重量的汽车在使用一加仑汽油时跑的公里数。 大致思路: (1)建立模型:采用sklearn中的线性回归模型,先进行数据训练,得出模型参数之后,再预测一下不同重量下的汽车的行驶公里数(汽车自重越大,行驶公里数越小) (2)评估模型:对比一下预测值和真实值,计算均方误差mse(mse=(真实值-预测值)^2 (对所有样本点求和)) 代码详解: import pandas as pd import matplotli..
预测燃油效率
萍水间人的小天地
06-01 290
先来简要地看一下数据集 是一个类似于CSV文件的 column_names = ['MPG','Cylinders','Displacement','Horsepower','Weight', 'Acceleration', 'Model Year', 'Origin'] raw_dataset = pd.read_csv(datas...
1.Auto MPG数据集 Auto MPG数据集是一个关于汽车燃油效率的数据集,它包含了1970年代末到1980年代初的不同品牌的汽车的各种特征和每加仑英里数(MPG)。这个数据集可以用来进行回归分析,预测汽车的燃油效率。数据集的特征有: 气缸数(Cylinders):多值离散型 排量(Displacement):连续型 马力(Horsepower):连续型 重量(Weight):连续型 加速度(Acceleration):连续型 型号年份(Model Year):多值离散型 产地(Origin):多值
04-21
离散型 回答:好的,这是一个关于汽车燃油效率的数据集,它包含了1970年代末到1980年代初的不同品牌的汽车的各种特征和每加仑英里数(MPG)。...这些特征可以用来进行回归分析,预测汽车的燃油效率

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 二十三、 爬取mzsock网站写真社区 91694
  • EPERM: operation not permitted, mkdir 'C:\Program Files\nodejs' 25393
  • 一阶暂态电路三要素法和三种响应 20193
  • RLC 串联电路 19970
  • 共集电极放大电路 18044

分类专栏

  • TensorFlow 付费 103篇
  • 玩转Python机器学习 付费 34篇
  • 玩转Python爬虫 付费 83篇
  • Java系列 付费 99篇
  • (1-3)Python金融量化 付费 24篇
  • 玩转 Python 数据分析 付费 67篇
  • Python教程系列专栏 付费 97篇
  • 大数据系列 hadoop Spark 系列 付费 37篇
  • (2-2)Elasticsearch系列 付费 10篇
  • 深度学习系列 1篇
  • 原力计算 214篇
  • 机器学习算法专题(精讲)蓄力计划 95篇
  • math 1篇
  • (7-1)互联网格局和人生的感想 13篇
  • (9-1)个人思考和感悟 1篇
  • 深度学习和目标检测系列教程 (300 ) 26篇
  • Python100例编程题 1篇
  • 树莓派 2篇
  • 恶补C++ 24篇
  • 剑指 Offer 1篇
  • 语音 2篇
  • (3-1)前端系列 74篇
  • 我的化工专业 95篇
  • (3-2)深入Git,Nginx,和Linux运维知识 21篇
  • 零基础学习NLP 19篇
  • (4-1)Go系列 11篇
  • openwrt 2篇
  • (3-2)Django系列 31篇
  • leetcode 19篇
  • (7-2)大四刷题拼offer系列 25篇
  • 遇到的Bug 49篇
  • kaggle 8篇
  • 案例 33篇
  • R 7篇

最新评论

  • 【数据分析实例】1 亿条淘宝用户行为Hive数据分析

    qq_58421227: 数据集在阿里云天池可以找到,连接不知道你们能不能打开,就是一样的数据 https://tianchi.aliyun.com/dataset/649

  • 【数据分析实例】1 亿条淘宝用户行为Hive数据分析

    一盆萝卜丁: 求数据集

  • 采用statsmodels处理多元回归问题

    2301_79470918: 这里不需要划分测试集和训练集吗

  • Tensorflow深度学习系列专栏简介

    CSDN-Ada助手: 推荐 Python入门 技能树:https://edu.csdn.net/skill/python?utm_source=AI_act_python

您愿意向朋友推荐“博客详情页”吗?

  • 强烈不推荐
  • 不推荐
  • 一般般
  • 推荐
  • 强烈推荐
提交

最新文章

  • Tensorflow深度学习系列专栏简介
  • 9 | Tensorflow io流和 tfrecord读取操作
  • 8 | Tensorflow中的batch批处理
2024年4篇
2023年141篇
2022年18篇
2021年209篇
2020年368篇
2019年609篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RunsenLIu

顺便点一个赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或 充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

深圳SEO优化公司揭阳阿里店铺托管南宁营销网站推荐丽江百度seo公司宁德网络广告推广多少钱武汉网站搜索优化报价肇庆营销网站多少钱迪庆网站优化排名贵阳seo网站推广推荐焦作网络广告推广公司内江seo优化公司永湖至尊标王推荐坂田阿里店铺托管价格汉中网络推广价格十堰seo排名推荐泉州优秀网站设计报价东营推广网站报价辽阳阿里店铺运营价格和田高端网站设计报价沙井外贸网站建设推荐中山百度网站优化报价许昌网站制作设计价格淮南企业网站制作多少钱昭通网站改版价格成都阿里店铺托管报价榆林网站优化软件推荐醴陵优化哪家好张家界百搜标王哪家好张家界关键词按天收费玉溪建网站多少钱吕梁SEO按效果付费哪家好歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化