机器学习-几种回归模型原理和实现

8 篇文章 1 订阅
订阅专栏

1. 什么是回归?

分类的目标变量是标称型数据,而回归是对连续型数据的预测。回归分析是一种预测建模技术,研究因变量和自变量之间的关系,如销售量预测或制造缺陷预测等,下图中的红线表示的就是回归曲线。

回归分析

回归不同于分类和聚类,他们的区别可以用下图形象的表达出来。

回归-分类-聚类的区别

2. 回归模型

这里使用sklearn进行代码实现,如果想手动实现的话,可以看《机器学习实战》,那本书有部分的算法实现,下面介绍的算法统一使用的函数如下

  • 加载数据 数据文件 点这里
def load_data(file_path):
    num_feat = len(open(file_path).readline().split("\t")) - 1
    data_mat = list()
    lable_mat = list()
    fr = open(file_path)
    for line in fr.readlines():
        line_arr = list()
        cur_line = line.strip().split("\t")
        for i in range(num_feat):
            line_arr.append(float(cur_line[i]))
        data_mat.append(line_arr)
        lable_mat.append(float(cur_line[-1]))
    return data_mat, lable_mat
  • 绘制回归结果
def plot_regression(model, x_data, y_data):
    x_data = np.mat(x_data)
    y_data = np.mat(y_data).T
    x_train, y_train = x_data[:150,1:], y_data[:150,:]
    x_test, y_test = x_data[150:,1:], y_data[150:,:]
    model.fit(x_train, y_train)
    score = model.score(x_test, y_test)
    result = model.predict(x_train)
    plt.figure()
    srt_idx = x_train.argsort(0)
    plt.plot(x_train[srt_idx].reshape(-1,1), y_train[srt_idx].reshape(-1,1), 'go', label = "true value")
    plt.plot(x_train[srt_idx].reshape(-1,1), result[srt_idx].reshape(-1,1), 'ro-', label = "predict value")
    plt.title("score:%f" % score)
    plt.legend()
    plt.show()

2.1 线性回归

2.1.1 普通线性回归

提到回归,首先想到的肯定是线性回归(linear regression),因为它是最容易理解,最简单的回归方法。设待拟合的数据对象为 X = { x 1 , x 2 , . . . , x m } X=\{x_1,x_2,...,x_m\} X={x1,x2,...,xm},其对应的真实值为 y = { y 1 , y 2 , . . . , y m } y=\{y_1,y_2,...,y_m\} y={y1,y2,...,ym},线性模型可以写为
y ^ = X w \hat{y}=Xw y^=Xw
其中, w w w回归系数,我们用平方误差来衡量拟合的误差
L ( X ) = ∑ i = 1 m ( y i − x i T w ) 2 = ( y − X w ) 2 L(X)=\sum_{i=1}^{m}\left ( y_i-x_{i}^{T}w\right )^2=\left ( y-Xw\right )^2 L(X)=i=1m(yixiTw)2=(yXw)2
上式对 w w w求导等于0可以得到
∂ L ( X ) ∂ w = ∂ ( y T y − w T X T y − y T X w − w T X T X w ) ∂ w = 2 X T ( y − X w ) = 0 \frac{\partial L(X)}{\partial w}=\frac{\partial (y^Ty-w^TX^Ty-y^TXw-w^TX^TXw)}{\partial w}=2X^T\left ( y-Xw\right )=0 wL(X)=w(yTywTXTyyTXwwTXTXw)=2XT(yXw)=0
可以得到
w ^ = ( X T X ) − 1 X T y \hat{w}=(X^TX)^{-1}X^Ty w^=(XTX)1XTy
上述方式容易对训练数据欠拟合,一种好的解决方式是局部加权线性回归,为每个误差增加一个权重 w i w_i wi(这里的 w w w并不是上面的 w ^ \hat{w} w^),此时误差函数可以写成
L ( X ) = ∑ i = 1 m w i ( y i − x i T w ) 2 = [ W ( y − X w ) ] 2 L(X)=\sum_{i=1}^{m}w_i\left ( y_i-x_{i}^{T}w\right )^2=[W( y-Xw)]^2 L(X)=i=1mwi(yixiTw)2=[W(yXw)]2
其中, W W W是一个对角矩阵,也叫做核,核的类型可以自由选择,最常见的就是高斯核,高斯核对应的权重如下
W ( j , j ) = exp ⁡ ( ∥ x i − x j ∥ 2 − 2 k 2 ) W(j,j)=\exp\left(\frac{\|x_{i}-x_{j}\|^{2}}{-2k^2}\right) W(j,j)=exp(2k2xixj2)
注意:这里的 x i x_i xi是指的单个数据,每个数据对应的权重矩阵都不同。
同样的,对新的误差函数 L ( X ) L(X) L(X)求导可以得到此时回归系数为
w ^ = ( X T W X ) − 1 X T W y \hat{w}=(X^TWX)^{-1}X^TWy w^=(XTWX)1XTWy
这里的 W W W其实是 W T W W^TW WTW,但是使用 W W W代替具有同样的意义并且简便。

sklearn调用代码:

x_data, y_data = load_data("ex0.txt")
from sklearn import linear_model
# 线性回归
model_linear_regression = linear_model.LinearRegression()
plot_regression(model_linear_regression, x_data, y_data)

绘制出的回归曲线如下图所示

linear regression

2.1.2 岭回归

我们看线性回归中的输入集 X = { x 1 , x 2 , . . . , x m } X=\{x_1,x_2,...,x_m\} X={x1,x2,...,xm},假设其维度为 n n n,当 n > m n>m n>m的时候, X X X不是满秩矩阵,无法求解逆矩阵,这时候就需要用到**岭回归(ridge regression)**了,在矩阵 X T X X^TX XTX上加上一个 λ I \lambda I λI让其成为满秩矩阵,那么这个时候的回归系数为
w ^ = ( X T X + λ I ) − 1 X T y \hat{w}=(X^TX+\lambda I)^{-1}X^Ty w^=(XTX+λI)1XTy

sklearn调用代码:

x_data, y_data = load_data("ex0.txt")
from sklearn import linear_model
# Ridge回归
model_ridge = linear_model.Ridge(alpha = 0.01)
plot_regression(model_ridge, x_data, y_data)

绘制出的回归曲线如下图所示

ridge regression

2.2 决策树回归

决策树学习常用的算法有ID3、C4.5、CART(classification and regression tree),这介绍用于回归的决策树CART,具体的方法理论参考李航的《统计学习方法》。

我们考虑输入的训练数据 D = { X , y } = { ( x 1 , y 1 ) , ( x 1 , y 1 ) , . . . , ( x m , y m ) } D=\{X,y\}=\{(x_1,y_1),(x_1,y_1),...,(x_m,y_m)\} D={X,y}={(x1,y1),(x1,y1),...,(xm,ym)},一个回归树对应着输入空间(即特征空间)的一个划分以及在划分的单元上的输出值,假设已将输入空间划分为 M M M个单元 R 1 , R 2 , . . . , R M R_1,R_2,...,R_M R1,R2,...,RM,并且在每一个单元上都有一个固定的输出值 c m c_m cm,那么回归树模型可以表示为
f ( x ) = ∑ m = 1 M c m I ( x ∈ R m ) f(x)=\sum_{m=1}^{M}c_mI(x \in R_m) f(x)=m=1McmI(xRm)
其中,函数 I I I对应着0-1函数。当输入空间的划分确定时,可以用平方误差 ∑ x i ∈ R m ( y i − f ( x i ) ) \sum_{x_i \in R_m}(y_i-f(x_i)) xiRm(yif(xi))来表示回归树对于训练数据的预测误差,用平方误差最小的准则求解每个单元上的最优输出值,那么单元 R m R_m Rm上的最优值 c m ^ \hat {c_m} cm^ R m R_m Rm上的所有输入实例 x i x_i xi对应的输出 y i y_i yi的均值,即
c m ^ = a v e ( y i ∣ x i ∈ R m ) \hat {c_m} = ave(y_i|x_i \in R_m) cm^=ave(yixiRm)
上面是整个树的输出形式,关键的问题来了,怎么对输入空间进行划分?这里采用启发式的算法,选择第 j j j个变量和它取的值 s s s作为切分变量(spliting variable)和切分点(spliting point),并定义两个区域
R 1 ( j , s ) = { x ∣ x j ≤ s } R 2 ( j , s ) = { x ∣ x j > s } R_1(j,s)=\{x|x_j≤s\} \quad R_2(j,s)=\{x|x_j>s\} R1(j,s)={xxjs}R2(j,s)={xxj>s}
然后寻找最优切分变量和最优切分点,即
m ( s ) = min ⁡ j , s [ min ⁡ c 1 ∑ x i ∈ R j ( j , s ) ( y i − c 1 ) 2 + min ⁡ c 2 ∑ x i ∈ R j ( j , s ) ( y i − c 2 ) 2 ] m(s)=\min_{j,s}\left[\min_{c_1}\sum_{x_i \in R_j(j,s)}(y_i-c_1)^2+\min_{c_2}\sum_{x_i \in R_j(j,s)}(y_i-c_2)^2\right] m(s)=j,sminc1minxiRj(j,s)(yic1)2+c2minxiRj(j,s)(yic2)2
简单的理解,就是在要求切分点 s s s两边的区域的均方差都尽量小的同时,保证两个区域的最小均方差和是最小的。

对每一对 ( j , s ) (j,s) (j,s),均值表示为
c 1 ^ = a v e ( y i ∣ x i ∈ R 1 ( j , s ) ) c 2 ^ = a v e ( y i ∣ x i ∈ R 2 ( j , s ) ) \hat {c_1} = ave(y_i|x_i \in R_1(j,s))\quad \hat {c_2} = ave(y_i|x_i \in R_2(j,s)) c1^=ave(yixiR1(j,s))c2^=ave(yixiR2(j,s))
遍历所有输入变量,找到最优的对 ( j , s ) (j,s) (j,s),从而将输入空间切分为两个区域,接着对切分的两个区域重复上述划分过程,直到满足停止条件为止,这样一个回归树的生成就完成了。

举个🌰,输入数据 D D D如下表所示。

x i x_i xi123456
y i y_i yi5.565.705.916.406.907.95

对上述连续型变量,只有一个切分变量,那么考虑切分点为1.5, 2.5, 3.5, 4.5, 5.5。对切分点依次求解 R 1 , R 2 , c 1 , c 2 , m ( s ) R_1,R_2,c_1,c_2,m(s) R1,R2,c1,c2,m(s),例如当切分点为2.5时, R 1 = { 1 , 2 } , R 2 = { 3 , 4 , 5 , 6 } R_1=\{1,2\},R_2=\{3,4,5,6\} R1={1,2},R2={3,4,5,6},其他的计算如下
c 1 = 1 N 1 ∑ x i ∈ R 1 ( j , s ) y i = 1 2 ( 5.56 + 5.70 ) = 5.63 c 2 = 1 N 2 ∑ x i ∈ R 2 ( j , s ) y i = 1 4 ( 5.91 + 6.40 + 6.90 + 7.95 ) = 6.79 s m = min ⁡ j , s [ min ⁡ c 1 ∑ x i ∈ R 1 ( j , s ) ( y i − c 1 ) 2 + min ⁡ c 2 ∑ x i ∈ R 2 ( j , s ) ( y i − c 2 ) 2 ] = 2.294 c_1=\frac{1}{N_1}\sum_{x_i \in R_1(j,s)}y_i=\frac{1}{2}(5.56+5.70)=5.63 \\ c_2=\frac{1}{N_2}\sum_{x_i \in R_2(j,s)}y_i=\frac{1}{4}(5.91+6.40+6.90+7.95)=6.79 \\ s_m=\min_{j,s}\left[\min_{c_1}\sum_{x_i \in R_1(j,s)}(y_i-c_1)^2+\min_{c_2}\sum_{x_i \in R_2(j,s)}(y_i-c_2)^2\right]=2.294 c1=N11xiR1(j,s)yi=21(5.56+5.70)=5.63c2=N21xiR2(j,s)yi=41(5.91+6.40+6.90+7.95)=6.79sm=j,sminc1minxiR1(j,s)(yic1)2+c2minxiR2(j,s)(yic2)2=2.294
第一次切分时,对象为全体输入,计算出来的 s m s_m sm值如下表所示。

切分点1.52.53.54.55.5
s ( m ) s(m) s(m)3.234682.2941.313733330.9567251.21752

可以看到,当 s = 4.5 s=4.5 s=4.5时,取得最小的 s ( m ) s(m) s(m)值,此时的回归估计值为全体输入的均值6.403,递归求解左子树和右子树的回归估计值,最终求解的回归方程为
f ( x ) = { 5.723 x ≤ 3.5 6.4 3.5 < x ≤ 4.5 6.9 4.5 < x ≤ 5.5 7.95 x > 5.5 f(x)=\begin{cases} 5.723 & x≤3.5 \\ 6.4 & 3.5<x≤4.5 \\ 6.9 & 4.5<x≤5.5 \\ 7.95 & x>5.5 \end{cases} f(x)=5.7236.46.97.95x3.53.5<x4.54.5<x5.5x>5.5

这个过程可以使用graphviz模块显示出来。

image-20191130004808546

使用本文一开始提到的数据,决策树回归的代码如下

# 决策树回归
from sklearn import tree
model_decisiontree_regression = tree.DecisionTreeRegress(min_weight_fraction_leaf=0.01)
plot_regression(model_decisiontree_regression, x_data, y_data)

decision tree regression

2.3 SVM回归

先回顾一下在基本线性可分情况下的SVM模型:
err ⁡ ( x i , y i ) = { 0 ∣ y i − w ⋅ x i − b ∣ ≤ ε ∣ y i − w ⋅ x i − b ∣ − ε ∣ y i − w ⋅ x i − b ∣ > ε \operatorname{err}\left(x_{i}, y_{i}\right)=\left\{\begin{array}{ll}{0} & {\left|y_{i}-w \cdot x_{i}-b\right| \leq \varepsilon} \\ {\left|y_{i}-w \cdot x_{i}-b\right|-\varepsilon} & {\left|y_{i}-w \cdot x_{i}-b\right|>\varepsilon}\end{array}\right. err(xi,yi)={0yiwxibεyiwxibεyiwxib>ε
分类SVM模型中要让训练集中的每个样本尽可能远离自己类别一侧的支持向量,回归模型也一样,沿用的是最大建哥分类器的思想。

对于回归模型,优化的目标函数和分类模型保持一致,依然是 min ⁡ w , b 1 2 ∥ w ∥ 2 \min_{w,b}\frac{1}{2}\|w\|^{2} minw,b21w2,但是约束条件不一样,回归模型的目标是让训练集中的每个样本点 ( x i , y i ) (x_i,y_i) (xi,yi)尽量拟合到一个线性模型 y i = w x i + b y_i=wx_i+b yi=wxi+b上,对于一般的回归模型使用均方误差MSE作为损失函数的,但是SVM回归不是这样定义的。

SVM需要我们定义一个常量 ε > 0 \varepsilon>0 ε>0,对于某一个点 ( x i , y i ) (x_i,y_i) (xi,yi),如果 ∣ y i − w x i − b ∣ ≤ ε \left|y_i-wx_i-b\right|≤\varepsilon yiwxibε,则完全没有损失,如果 ∣ y i − w x i − b ∣ > ε \left|y_i-wx_i-b\right|>\varepsilon yiwxib>ε,则对应的损失为 ∣ y i − w x i − b ∣ − ε \left|y_i-wx_i-b\right|-\varepsilon yiwxibε,这个和均方差损失不同,对于均方差,只要 ∣ y i − w x i − b ∣ ≠ 0 \left|y_i-wx_i-b\right|\neq 0 yiwxib=0就会有损失。

如下图所示,在蓝色条带里面的点是没有损失的,但是在外面的点是有损失的,损失大小为红色线的长度。

SVM回归损失函数

总结下,我们的SVM回归模型的损失函数度量为
err ( x i , y i ) = { 0 ∣ y i − w ⋅ x i − b ∣ ≤ ε ∣ y i − w ⋅ x i − b ∣ − ε ∣ y i − w ⋅ x i − b ∣ > ε \text{err}\left(x_{i}, y_{i}\right)=\left\{\begin{array}{ll}{0} & {\left|y_{i}-w \cdot x_{i}-b\right| \leq \varepsilon} \\ {\left|y_{i}-w \cdot x_{i}-b\right|-\varepsilon} & {\left|y_{i}-w \cdot x_{i}-b\right|>\varepsilon}\end{array}\right. err(xi,yi)={0yiwxibεyiwxibεyiwxib>ε
有了损失函数之后,我们就可以定义SVM回归的目标函数为
min ⁡ 1 2 ∥ w ∥ 2 2  s.t  ∣ y i − w ⋅ x i − b ∣ ≤ ε ( i = 1 , 2 , … , m ) \min \frac{1}{2}\|w\|_{2}^{2} \\ \text { s.t }\left|y_{i}-w \cdot x_{i}-b\right| \leq \varepsilon(i=1,2, \ldots,m) min21w22 s.t yiwxibε(i=1,2,,m)
这个模型的最优解求解过程这里不再赘述,有兴趣的可以看 参考[2]或者[3]中的论述。

使用本文一开始提到的数据,SVM回归的代码如下

# SVM回归
from sklearn import svm
model_svr = svm.SVR()
plot_regression(model_svr, x_data, y_data)

SVM regression

参考

[1] 李航. 统计学习方法, 清华大学出版社

[2] CSDN-SVM回归博客

[3] cnblog-SVM回归博客

机器学习入门之7种经典回归模型
weixin_42731853的博客
12-09 6348
介绍 线性和逻辑回归通常是学习数据科学时接触的第一个算法,由于它们非常流行,许多分析师甚至认为它们是唯一的回归技术。 事实上,存在多种不同形式的回归模型,每种形式都有自身的特点和特定的应用场景。在本文中,我将简要介绍数据科学中最常用的7种回归模型。 通过本文,我希望人们对回归分析有更深入的理解,而不是仅仅停留在线性回归和逻辑回归的层面。 本文来自《数据黑客》,登录官网可阅读更多精彩资讯和文章。 目录 什么是回归分析? 为什么使用回归分析? 有哪些常用的回归模型? 线性回归 逻辑回归 多项式回归 逐步回归
机器学习之多项式回归模型泛化
ysl的博客
08-09 602
1.什么是多项式回归 多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式的回归分析方法。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。  在一元回归分析中,如果依变量y与自变量x的关系为非线性的,但是又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。  多项式回归的最大优点就是可以通过增加x的高次项对实测点...
文档Python机器学习库sklearn几种回归算法建模及分析
04-17
文档Python机器学习库sklearn几种回归算法建模及分析实验提取方式是百度网盘分享地址
分类模型(1)——逻辑回归和SVM
weixin_52640021的博客
12-18 2364
1)线性属性非线性:特征转换(多项式回归)全局性非线性:线性分类 激活函数(逻辑回归)系数非线性:神经网络 ,感知机2)全局性线性样条回归:决策树3)数据未加工PCA,流形硬分类1)线性判别分析:fisher2) 感知机软分类生成式:Gaussion Discriminal Analysis判别式:Logistic Regression逻辑回归利用上一章的多元线性回归模型进行回归。写成向量乘积形式:根据上一章讨论的内生性问题:只能取0或者1(回归系数估计出来不一致且有偏)显然。
决策树回归(概念+实例)
最新发布
weixin_47151388的博客
04-29 2572
决策树回归(Decision Tree Regression)是一种常用的机器学习算法,用于预测连续型变量的取值。它基于树结构来对数据进行建模和预测,通过将数据集划分为不同的区域,并在每个区域内预测一个常数值来实现回归任务。在本文中,我将详细介绍决策树回归原理、构建过程、优缺点以及应用场景。
机器学习】一些常用的回归模型实战(9种回归模型
热门推荐
探索世界,改变世界
08-27 3万+
实战说明 本次实战为,使用一些常用的回归模型对数据集做出预测,绘制预测结果是否符合要求。 本次实战的回归模型有: Linear Regression(线性回归) Decision Tree Regressor(决策树回归) SVM Regressor(支持向量机回归) K Neighbors Regressor(K近邻回归) Random Forest Regressor(随机森...
sklearn保存svm分类模型_sklearn(四)逻辑回归
weixin_39681161的博客
11-26 259
逻辑回归是一个对数几率模型(又译作逻辑模型,评估模型,分类评估模型)是离散选择法模型之一,属于多重变量分析类别,是 一种广义的线性回归分析模型。是社会学,生物统计学,临床,数量心理学,计量经济学,市场营销等统计实证分析的常用方法。尽管叫逻辑回归,但是其实并不用于回归分析,而是用于分类,也称为对数回归,最大熵分类,或者对数线性分类器。举例子:胃癌病情分析,一组是胃癌,一组是非胃癌,因变量为是否胃癌;...
深入讨论机器学习 8 大回归模型的基本原理以及差异!
红色石头的专栏
05-02 2294
作者 | 台运鹏几乎每个机器学习从业者都知道回归,其中一些人可能认为这没什么大不了的,只是从参数之间的切 换罢了。本文将阐明每种回归算法的细节,以及确切的区别。包括 :OLSWeighte...
机器学习回归模型
weixin_44327296的博客
07-12 4187
机器学习(二)之回归模型回归模型线性回归模型步骤step1:模型假设——线性模型step2:模型评估——损失函数step3:最佳模型——梯度下降梯度下降算法在现实世界中的挑战选择其他更复杂的1元N次线性模型步骤优化合并法引入更多参数正则化 回归模型 回归模型(Regression Model):是一种有监督学习算法,用来建立自变量X和观测变量Y之前的映射关系。若观测变量Y是连续的则属于回归模型,若Y是离散的是属于分类模型回归定义:找到一个函数,通过输入特征X,输出一个数值scalar。 应用举例: 股市
机器学习模型——回归模型
weixin_46351593的博客
05-26 2936
损失函数是系数的函数,另外还要传入数据的x,y def compute_cost(w , b , points) : total_cost = 0 M = len(points) # 逐点计算平方损失误差,然后求平均数 for i in range(M) : x = points [ i , 0 ] y = points [ i , 1 ] total_cost +=(y - w * x - b) ** 2 # **2 代表平方 return total_cost / M。
机器学习——回归模型
阿鹏的摇滚小站
03-03 762
一、线性回归 回归的目的是预测数值型的目标值。最直接的办法是依据输入写出一个目标值的计算公式,该公式就是所谓的回归方程(regression equation)。求回归方程中的回归系数的过程就是回归。 线性回归的几个特点: 1. 建模速度快,不需要很复杂的计算,在数据量大的情况下依然运行速度很快。 2. 可以根据系数给出每个变量的理解和解释 3. 对异常值很敏感。 # 代码表示:lin...
Python机器学习库sklearn几种回归算法建模及分析实验
12-23
sklearn库,Python机器学习库sklearn几种回归算法建模及分析实验,Python机器学习库sklearn⼏种回归算法建模及分析(实验)最简单的回归模型就是线性回归
回归模型中基于机器学习的流量预测算法.pdf
09-24
"机器学习基于回归模型的流量预测算法" 本文对基于机器学习的流量预测算法进行了详细的研究,提出了基于回归模型的预测算法,将机器学习算法引入到网络流量预测中,描述了网络流量中的非线性特性。 一、机器学习在...
python机器学习算法决策树和聚类分析实验报告
05-11
Python 机器学习算法决策树和聚类分析实验报告中涉及到以下几个重要的知识点: 1. 决策树(Decision Tree)的概念和构造过程:决策树是一种常用的机器学习算法,用于解决分类和回归问题。构造决策树需要解决三个...
线性回归预测波士顿房屋价格(使用 scikit-learn 和 XGBoost 两种方式),可扩展应用到小样本数据的故障诊断领域
09-29
# XGBoost是一套提升树可扩展的机器学习系统,也可以实现线性回归 # 使用XGBoost时,需将数据转化为DMatrix格式,否则会出现错误 # 使用评估指标判断 scikit-learn 和 XGBoost 两种线性回归方式实现波士顿房屋价格...
监督学习模型(线性回归,非线性回归,逻辑回归,SVM,决策树,岭回归,Losso回归)...
weixin_30885111的博客
03-11 401
一.数据产生 1 from sklearn.datasets import make_classification, make_blobs 2 from matplotlib.colors import ListedColormap 3 from sklearn.datasets import load_breast_cancer 4 from adspy_shared_uti...
基于Matlab模拟时变瑞利衰落信道中的差分放大转发中继
matlab_dingdang的博客
06-17 261
1 算法原理2 算法流程。
机器学习】SVM之回归模型
qq_32742009的博客
08-06 2万+
review 先回顾一下在基本线性可分情况下的SVM模型: 分类svm模型中要让训练集中的各个样本点尽量远离自己类别一侧的支持向量。 其实回归模型也沿用了最大间隔分类器的思想。 误差函数 对于回归模型,优化目标函数和分类模型保持一致,依然是,但是约束条件不同。我们知道回归模型的目标是让训练集中的每个样本点,尽量拟合到一个线性模型上。对于一般的回归模型,我们是用均方误差作为损失函数的,...
讲一下机器学习的几个基本模型原理
09-17
### 回答1: 机器学习的几个基本模型...综上所述,线性回归、决策树、支持向量机和神经网络是机器学习中几个基本模型原理。这些模型原理在实际问题中的应用非常广泛,能够帮助我们处理复杂的数据和改善决策过程。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 哈希表的原理和使用(C++代码) 51736
  • Python绘制地图神器folium入门 21298
  • 不规则多边形重心求解 14017
  • strcpy和memcpy的区别 10743
  • 不规则多边形等比例缩小及等间距缩小算法 9011

分类专栏

  • 机器学习 8篇
  • 自然语言处理 1篇
  • 算法与数据结构 13篇
  • python 7篇
  • Java 1篇
  • C++ 9篇
  • 数据库 1篇
  • 计算机操作系统 1篇
  • 计算机网络 1篇
  • PCL点云数据处理 1篇
  • MFC入门 2篇
  • 开发工具 4篇
  • 其他 3篇

最新评论

  • strcpy和memcpy的区别

    weixin_45166175: 那个判断条件那样写对吗,感觉比的不是strsrc!='\0'

  • 不规则多边形等比例缩小及等间距缩小算法

    波兰无来客: 请问如果换成多面体呢

  • strcpy和memcpy的区别

    柚凉OO: 拒接抄袭

  • strcpy和memcpy的区别

    柚凉OO: typedef 的

  • python循环中慎用pop()函数和remove()函数

    我爱小疯喵喵: 解决方法一有问题吧

您愿意向朋友推荐“博客详情页”吗?

  • 强烈不推荐
  • 不推荐
  • 一般般
  • 推荐
  • 强烈推荐
提交

最新文章

  • Python绘制地图神器folium入门
  • 机器学习-海量数据处理
  • 机器学习-异常检测
2020年6篇
2019年28篇
2018年16篇
2017年3篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

深圳SEO优化公司杭州品牌网站设计哪家好鄂州seo优化哪家好西宁网站改版推荐兴安盟SEO按天收费多少钱塘坑网站推广方案价格抚州网站开发多少钱常州品牌网站设计推荐长春关键词排名包年推广哪家好绥化外贸网站制作报价天门seo推荐大同百度seo多少钱大连百姓网标王价格资阳seo排名公司迪庆百度关键词包年推广推荐桂林百度关键词包年推广公司安康网站推广工具公司驻马店网站搜索优化推荐梧州关键词排名包年推广公司通化企业网站改版哪家好滁州企业网站改版多少钱海口SEO按天计费报价九江网站开发推荐洛阳SEO按天扣费公司白银网站推广方案公司襄樊网络营销多少钱邯郸seo排名哪家好柳州百度网站优化排名重庆关键词按天扣费报价恩施网站建设公司株洲优秀网站设计报价歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化