神经网络调参实战(二)—— activation(激活函数) & initializer(参数初始化) & optimizer(优化器)

activation 激活函数

      relu, sigmoid, tanh

weight initializer 参数初始化

      he(何恺明), xavier, normal, truncated_normal

optimizer 优化方法

      Adam, Momentum, Gradient Descent.

这些都实现在我们的计算图构建之中

我们在原来vggnet的基础上

import tensorflow as tf
import os
import pickle
import numpy as np
 
CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))
 
 
def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']
 
# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels
 
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
 
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
 
 
 
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])
 
# conv1: 神经元图, feature_map, 输出图像
conv1_1 = tf.layers.conv2d(x_image,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv1_2')
 
# 16 * 16
pooling1 = tf.layers.max_pooling2d(conv1_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool1')
 
 
conv2_1 = tf.layers.conv2d(pooling1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv2_2')
# 8 * 8
pooling2 = tf.layers.max_pooling2d(conv2_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool2')
 
conv3_1 = tf.layers.conv2d(pooling2,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1,
                           32, # output channel number
                           (3,3), # kernel size
                           padding = 'same',
                           activation = tf.nn.relu,
                           name = 'conv3_2')
# 4 * 4 * 32
pooling3 = tf.layers.max_pooling2d(conv3_2,
                                   (2, 2), # kernel size
                                   (2, 2), # stride
                                   name = 'pool3')
# [None, 4 * 4 * 32]
flatten = tf.layers.flatten(pooling3)
y_ = tf.layers.dense(flatten, 10)
 
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_
 
# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
 
with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
 
 
 
 
 
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100
 
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

激活函数 activation

激活函数是在这里设置

为了方便调整激活函数,先把网络层给封装一下

我们之前是用的relu函数作为激活函数进行训练的,acc在71.8%

这里我们把激活函数设为sigmoid,其他都不变,看一下效果

可以看到,最终acc只有54%左右,效果不如relu

之后我们换回relu

import tensorflow as tf
import os
import pickle
import numpy as np
 
CIFAR_DIR = "dataset/cifar-10-batches-py"
print(os.listdir(CIFAR_DIR))
 
 
def load_data(filename):
    """read data from data file."""
    with open(filename, 'rb') as f:
        data = pickle.load(f, encoding='bytes')
        return data[b'data'], data[b'labels']
 
# tensorflow.Dataset.
class CifarData:
    def __init__(self, filenames, need_shuffle):
        all_data = []
        all_labels = []
        for filename in filenames:
            data, labels = load_data(filename)
            all_data.append(data)
            all_labels.append(labels)
        self._data = np.vstack(all_data)
        self._data = self._data / 127.5 - 1
        self._labels = np.hstack(all_labels)
        print(self._data.shape)
        print(self._labels.shape)
        
        self._num_examples = self._data.shape[0]
        self._need_shuffle = need_shuffle
        self._indicator = 0
        if self._need_shuffle:
            self._shuffle_data()
            
    def _shuffle_data(self):
        # [0,1,2,3,4,5] -> [5,3,2,4,0,1]
        p = np.random.permutation(self._num_examples)
        self._data = self._data[p]
        self._labels = self._labels[p]
    
    def next_batch(self, batch_size):
        """return batch_size examples as a batch."""
        end_indicator = self._indicator + batch_size
        if end_indicator > self._num_examples:
            if self._need_shuffle:
                self._shuffle_data()
                self._indicator = 0
                end_indicator = batch_size
            else:
                raise Exception("have no more examples")
        if end_indicator > self._num_examples:
            raise Exception("batch size is larger than all examples")
        batch_data = self._data[self._indicator: end_indicator]
        batch_labels = self._labels[self._indicator: end_indicator]
        self._indicator = end_indicator
        return batch_data, batch_labels
 
train_filenames = [os.path.join(CIFAR_DIR, 'data_batch_%d' % i) for i in range(1, 6)]
test_filenames = [os.path.join(CIFAR_DIR, 'test_batch')]
 
train_data = CifarData(train_filenames, True)
test_data = CifarData(test_filenames, False)
 
 
 
x = tf.placeholder(tf.float32, [None, 3072])
y = tf.placeholder(tf.int64, [None])
# [None], eg: [0,5,6,3]
x_image = tf.reshape(x, [-1, 3, 32, 32])
# 32*32
x_image = tf.transpose(x_image, perm=[0, 2, 3, 1])

def convnet(inputs, activation):
    # conv1: 神经元图, feature_map, 输出图像
    conv1_1 = tf.layers.conv2d(x_image,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv1_1')
    conv1_2 = tf.layers.conv2d(conv1_1,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv1_2')
    
    # 16 * 16
    pooling1 = tf.layers.max_pooling2d(conv1_2,
                                    (2, 2), # kernel size
                                    (2, 2), # stride
                                    name = 'pool1')
    
    
    conv2_1 = tf.layers.conv2d(pooling1,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv2_1')
    conv2_2 = tf.layers.conv2d(conv2_1,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv2_2')
    # 8 * 8
    pooling2 = tf.layers.max_pooling2d(conv2_2,
                                    (2, 2), # kernel size
                                    (2, 2), # stride
                                    name = 'pool2')
    
    conv3_1 = tf.layers.conv2d(pooling2,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv3_1')
    conv3_2 = tf.layers.conv2d(conv3_1,
                            32, # output channel number
                            (3,3), # kernel size
                            padding = 'same',
                            activation = activation,
                            name = 'conv3_2')
    # 4 * 4 * 32
    pooling3 = tf.layers.max_pooling2d(conv3_2,
                                    (2, 2), # kernel size
                                    (2, 2), # stride
                                    name = 'pool3')
    # [None, 4 * 4 * 32]
    flatten = tf.layers.flatten(pooling3)
    return flatten

flatten = convnet(x_image, tf.nn.relu)
y_ = tf.layers.dense(flatten, 10)

 
loss = tf.losses.sparse_softmax_cross_entropy(labels=y, logits=y_)
# y_ -> sofmax
# y -> one_hot
# loss = ylogy_
 
# indices
predict = tf.argmax(y_, 1)
# [1,0,1,1,1,0,0,0]
correct_prediction = tf.equal(predict, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
 
with tf.name_scope('train_op'):
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
 
 
 
 
 
init = tf.global_variables_initializer()
batch_size = 20
train_steps = 10000
test_steps = 100
 
# train 10k: 73.4%
with tf.Session() as sess:
    sess.run(init)
    for i in range(train_steps):
        batch_data, batch_labels = train_data.next_batch(batch_size)
        loss_val, acc_val, _ = sess.run(
            [loss, accuracy, train_op],
            feed_dict={
                x: batch_data,
                y: batch_labels})
        if (i+1) % 100 == 0:
            print('[Train] Step: %d, loss: %4.5f, acc: %4.5f' 
                  % (i+1, loss_val, acc_val))
        if (i+1) % 1000 == 0:
            test_data = CifarData(test_filenames, False)
            all_test_acc_val = []
            for j in range(test_steps):
                test_batch_data, test_batch_labels \
                    = test_data.next_batch(batch_size)
                test_acc_val = sess.run(
                    [accuracy],
                    feed_dict = {
                        x: test_batch_data, 
                        y: test_batch_labels
                    })
                all_test_acc_val.append(test_acc_val)
            test_acc = np.mean(all_test_acc_val)
            print('[Test ] Step: %d, acc: %4.5f' % (i+1, test_acc))

weight initializer 参数初始化

原本是没写的,如果想修改initializer的话需要自己加

默认使用的是 tf.glorot_uniform_initializer。默认是None,但是后来会使用一个超参数去修改它成tf.glorot_uniform_initializer

如果我们这么写,kernel_initializer是None的话,就是和之前是一样的

准确率在73%

如果我们换上tf.truncated_normal_initializer(stddev=0.02), 准确率在65%左右


 

如果换成 tf.keras.initializers.he_normal(),准确率在71%

但是我们了解到的是何恺明的方法是一个比较好的优化方法,在这里没有表现比较好的原因可能是我们的网络是一个比较浅层次的网络,6个卷积+1个全连接,还没有发挥出何恺明优化的效果

我们再改回原来默认的初始化器

optimizer 优化方法

优化器是在这里设置

现在用的是Adam

如果我们换成梯度下降gradientdescent

gradientdescent的lr值要设的小一点,否则会跑飞(loss值非但不会缓慢下降,反而会增长)

训练了一下,acc是57%

如果我们换成MomentumOptimizer,acc是36%

可以看出,不同的梯度优化方法的差异还是蛮大的

原因也有多个

可能是initializer和optimizer不匹配,调参是一个复杂系统的多因素影响的过程,单一更改一个因素可能会导致其他因素和它不协调而出现问题

还有可能是训练不充分。momentum的收敛是比较慢的,可能目前只是处于一个快要收敛的步数上

hxxjxw
关注 关注
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
bp_v1_2.rar_activation function_matlab 数据归一化_激活函数_神经网络 线性函数_神经网络
07-15
-----引入动量的算法 建立一个3层(含输入层)的BP神经网络,并对其进行训练 输入层不进行数据处理,隐含层激活函数为sigmod函数,输出层为线性函数 输入输出数据归一化到[-1,1],数据在矩阵中按行向量表示 即x=[x11,x12 x21,x22 ... xp1,xp2] y=[y1 y2 ... yp] p为样本数
keras中激活函数使用
zfjBIT的专栏
06-13 7262
两种方式: 一、通过keras封装的网络层中的activation参数指定: 例如,下面的卷积层中的指定的激活函数为ReLU函数: from keras.model import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D model = Sequential() mod...
react中的keep-alive功能
xiaojinglyd的博客
09-17 2078
在vue中可以很方便的实现keep-alive功能,但是在react中却不是很方便,遇事不要慌,度娘来帮忙。 react-keep-alive 首先找到的是react-keep-alive,一波操作之后,发现原来显示的页面不显示了,唉,抬下去,下一个! react-activation 这个真香,具体怎么使用不再介绍,请查看中文文档,使用的时候要认真查看文档,同一个父节点下,相同位置的 <KeepAlive> 默认会使用同一份缓存,要想实现多份需要增加动态id属性来区分。手动控制缓存(tabBa
tf.nn.relu与tf.nn.relu_layer
re_raise的博客
09-17 4479
1. tf.nn.relu激活函数不必多数: 传入tf.nn.relu()的参数,是:tensor和weights卷积后+biases   2. tf.nn.relu_layer(): def relu_layer(x, weights, biases, name=None): """Computes Relu(x * weight + biases).""" 传入tf.nn....
TF-激活函数 tf.nn.relu 介绍
weixin_30780649的博客
06-04 796
tf.nn.relu(features, name = None) 这个函数的作用是计算激活函数 relu,即 max(features, 0)。即将矩阵中每行的非最大值置0。 import tensorflow as tf a = tf.constant([-1.0, 2.0]) with tf.Session() as sess: b = tf.nn.rel...
初学Tensorflow|Day4
qq_47335138的博客
07-26 642
学习tensorflow笔记
03_activation_functions_激活函数_activationfunction_
09-29
激活函数的作用 在神经网络
Sparse Autoencoder的实现基于人工神经网络activation function用的是sigmoid函数
最新发布
04-09
2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。...
使用不同卷积神经网络和深度神经网络以及不同激活函数组合的图像分类和性能分析架构-研究论文
06-10
图像分类是一个复杂的计算机视觉问题。... 体系结构因所拍摄的图像大小、不同数量的过滤器、不同的子采样过程和不同的激活函数而异。 发现具有 Relu 和 Hyperbolic 激活函数组合的架构优于其他架构和其他激活函数组合。
形象的解释神经网络激活函数的作用是什么?
07-05
形象的解释神经网络激活函数的作用是什么?
Tensorflow LSTM选择Relu激活函数与权重初始化、梯度修剪解决梯度爆炸问题实践
肖永威的专栏
03-27 6319
我最近研究多层LSTM在时序业务场景中的应用,基于Tensorflow框架实现的时候,如果把激活函数由默认tanh换成Relu时,出现梯度爆炸及难于训练问题,通过权重初始化、梯度修剪解决梯度爆炸问题。
YOLOv5的Tricks | 【Trick1】关于激活函数Activation的改进汇总
Clichong
06-01 6935
如有错误,恳请指出。在yolov5模型搭建的过程实现中,额外实现了很多非常新奇有趣的激活函数,不再是的简单nn.ReLU等,所以这里使用这篇笔记来对这一些列的激活函数进行总结归纳。关于激活函数,在很早之前我写过一篇笔记介绍,笔记链接:激活函数与Loss函数求导,在这里主要介绍的是目标检测yolov5算法中实现的一些的激活函数,主要设计ReLU函数及其变体,包含ReLU,PReLU,RReLU,FReLU,Swish,Mish,Acon系列,Dynamic ReLU系列。ReLU相比之前的 Sigmoid/t
激活函数(Relu,sigmoid,Tanh,softmax)详解
热门推荐
m0_53675977的博客
12-10 1万+
总结了常用的激活函数,如何在工程实践中合理选择激活函数
各种activation function(激活函数) 简介
Mr_wuliboy的博客
07-02 8769
之前在使用activation function的时候只是根据自己的经验来用,例如分类使用sigmoid或者softmax,多分类使用softmax,Dense一般都是Relu,例如tanh几乎没用过,最近在复线别人代码的时候发现别人Dense层使用的tanh激活函数,所以决定系统的看一下各类激活函数以及其优缺点。 激活函数分类线性和非线性,例如Dense层如果不指定激活函数则会默认activ...
tensorflow 1.0 学习:参数初始化initializer)
weixin_33964094的博客
06-02 1442
CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1、tf.constant_initializer() 也可以简写为tf....
人工智能--深度强化模型
看,好自为之的博客!!!
12-30 2271
理解深度强化模型的基本原理和掌握利用深度强化模型训练网络的方法
【论文复现】ReLU Activation(2011)
qq_38253797的博客
07-17 7326
目录前言一、背景1.1、为什么需要激活函数?1.2、大脑工作原理:稀疏性原理1.3、稀疏性优点、ReLU定义三、ReLU函数优缺点3.1、优点3.2、缺点四、几个其他变体激活函数4.1、Leaky ReLU4.2、PReLU(parametric ReLU)4.3、RReLU(Random ReLU)4.4、ReLU6(抑制其最大值)Reference 前言 论文地址: https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf. 贡献:根据生物神.
激活函数
l090121326的博客
10-26 1174
激活函数一. Sigmoid 函数sigmoid基本性质逻辑回归LSTM双曲正切函数tanh基本性质RNN三. ReLUReLU基本性质P-ReLUR-ReLUE-ReLU 一. Sigmoid 函数 sigmoid基本性质 Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,Sigmoid函数常被用作神经网络的阈值函数,将变量映射到...
DeepLearning: 归纳几种常用的激活函数(activation)
RaySunWHUT
12-01 2078
Deep Learning中常用的激活函数(activation) 1. sigmoid 表达式: a=sigmoid(z)=11+e−z a = sigmoid(z) = \frac {1} {1 + e^{-z}} a=sigmoid(z)=1+e−z1​ 函数图像: 适用范围: \quad sigmoidsigmoidsigmoid 函数适用于刚接触机器学习的同学,使用sigmoidsig...
1. 导入库 2. 超参数设置 3. 载入MNIST数据 4. 设置训练配置 5. 搭建神经网络架构 6. 初始化框架 7. 定义损失函数和优化器 8. 训练 9. 测试 10. 可视化
06-06
好的,以下是一个基于TensorFlow的简单的MNIST手写数字识别模型的代码实现,包含了您提到的所有步骤: ``` # 导入库 import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 超参数设置 learning_rate = 0.01 batch_size = 128 num_epochs = 10 # 载入MNIST数据 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 设置训练配置 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) global_step = tf.Variable(0, trainable=False, name='global_step') # 搭建神经网络架构 X = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) hidden_1 = tf.layers.dense(inputs=X, units=512, activation=tf.nn.relu) hidden_2 = tf.layers.dense(inputs=hidden_1, units=256, activation=tf.nn.relu) logits = tf.layers.dense(inputs=hidden_2, units=10) # 初始化框架 init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # 定义损失函数和优化器 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits, labels=y)) train_op = optimizer.minimize(loss, global_step=global_step) # 训练 for epoch in range(num_epochs): total_loss = 0 num_batches = int(mnist.train.num_examples / batch_size) for i in range(num_batches): batch_x, batch_y = mnist.train.next_batch(batch_size) _, loss_val, step = sess.run([train_op, loss, global_step], feed_dict={X: batch_x, y: batch_y}) total_loss += loss_val avg_loss = total_loss / num_batches print("Epoch:", epoch+1, "Loss:", avg_loss) # 测试 correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) test_accuracy = sess.run(accuracy, feed_dict={X: mnist.test.images, y: mnist.test.labels}) print("Test Accuracy:", test_accuracy) # 可视化 import matplotlib.pyplot as plt plt.plot(avg_loss_history) plt.xlabel('Epochs') plt.ylabel('Average Loss') plt.show() ``` 这个代码实现了一个三层的神经网络结构,包含两个隐藏层和一个输出层,使用Adam优化器进行模型训练,使用softmax交叉熵损失函数计算模型误差。在训练完成后,计算测试集上的准确率,并绘制训练过程中损失函数变化的曲线图。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 统计学中的Bootstrap方法(Bootstrap抽样) 53455
  • 基于MATLAB的二进制数字调制与解调信号的仿真——2FSK 43713
  • Pytorch清空显存缓冲区(torch.cuda.empty_cache) 38208
  • Pytorch nn.Parameter() (register_parameter) 36376
  • 深度学习与神经网络(五)——全连接层(nn.Linear()) 33779

分类专栏

  • ACM 98篇
  • MATLAB 7篇
  • 通信原理 7篇
  • 数学建模 1篇
  • codeforces 29篇
  • 贪心 2篇
  • 树状数组 5篇
  • 归并排序 1篇
  • 思维 30篇
  • 操作系统 3篇
  • 信号量 2篇
  • 线段树 1篇
  • 暴力 4篇
  • 矩阵快速幂 3篇
  • BM 1篇
  • 数论 6篇
  • 欧拉降幂 2篇
  • 指数循环节 1篇
  • 计算几何 4篇
  • dp 10篇
  • 模拟 14篇
  • 期望 5篇
  • 错排 2篇
  • 异或 1篇
  • 组合数取模 1篇
  • 找规律 7篇
  • 前缀和 1篇
  • Atcoder 1篇
  • 分治 1篇
  • 构造 1篇
  • Java大数 1篇
  • 二分 3篇
  • 概率dp 2篇
  • 快速幂 1篇
  • 取模 1篇
  • 并查集 1篇
  • dfs 2篇
  • set 1篇
  • 对抗搜索 1篇
  • 抽屉原理 2篇
  • 分类讨论 1篇
  • 背包 2篇
  • 三分 2篇
  • 约瑟夫环 3篇
  • 组合数 1篇
  • 汇编语言 11篇
  • 对拍 1篇
  • 算法设计 3篇
  • Autorun 3篇
  • TCP客户端 1篇
  • TCP服务器端
  • UDP客户端程序
  • UDP服务器端 1篇
  • MySQL 4篇
  • github 1篇
  • XSS 1篇
  • shutdown 1篇
  • sstream 1篇
  • FTP 1篇
  • PHP 5篇
  • jQuery 1篇
  • python 10篇
  • OpenCV 1篇
  • 路由器 1篇
  • 数据库 3篇
  • SQL 1篇
  • SQL Server 1篇
  • 经济学
  • 计算机网络 1篇
  • 区块链 1篇
  • 缩写
  • 补码 1篇
  • 军事政治
  • 容器 1篇
  • 虚拟化 1篇
  • 云计算
  • 语言 1篇
  • 树莓派 1篇
  • 历史 1篇
  • 生活 1篇
  • linux 6篇
  • bash 1篇
  • shell 2篇
  • SCI 1篇
  • VHDL 1篇
  • Quartus 1篇
  • 兵器 1篇
  • arp攻击 1篇
  • 桌面右键菜单添加新选项 1篇
  • 注册表 2篇
  • 医学 1篇
  • nmap
  • 数据科学
  • 机器学习 4篇
  • IIS的配置 1篇
  • FTP服务器 1篇
  • PostgreSQL 1篇
  • Tableau 1篇
  • 强化学习
  • Word宏 2篇
  • VB 1篇
  • 宏病毒 1篇
  • DoS攻击 1篇
  • 缓冲区溢出 1篇
  • 人工智能 5篇
  • tensorflow 7篇
  • gcc 1篇
  • 编译器优化 1篇
  • SSL 1篇
  • HTTPS 1篇
  • SAM 1篇
  • 组策略 1篇
  • Windows启动文件夹 1篇
  • 设置开机自启动脚本 1篇
  • 设置软件开机自启 1篇
  • Windows任务计划程序 1篇
  • WSH 1篇
  • FSO 1篇
  • 开机自启动 1篇
  • ActiveX 1篇
  • desktop.ini 1篇
  • folder.htt 1篇
  • 网络爬虫 5篇
  • Windows防火墙 1篇
  • IA-32处理器
  • 8086 1篇
  • 操作系统的模式 1篇
  • 命令行传参
  • 气候科学
  • 大数据 18篇
  • ini文件 1篇
  • inf文件 1篇
  • 文件系统 1篇
  • 编码 1篇
  • Windows系统 2篇
  • Linux使用
  • 开始屏幕 1篇
  • 后台登陆密码绕过 1篇
  • sql注入 1篇
  • 一句话木马 1篇
  • Win10 2篇
  • 创建新用户账户 1篇
  • Windows 1篇
  • 本地安全策略 1篇
  • 蜜罐 1篇
  • 木马 1篇
  • 冰河 1篇
  • Android 4篇
  • gradle
  • HBase 1篇
  • MapReduce 1篇
  • Spark
  • ubuntu
  • Hadoop 1篇
  • html 1篇
  • css 1篇
  • Java 8篇
  • jsp 1篇
  • Nginx 1篇
  • 日志 1篇
  • Scala 1篇
  • svn
  • git 1篇
  • NoSQL 1篇
  • Spark SQL 1篇
  • Hive 1篇
  • MongoDB 1篇
  • Spark Streaming 1篇
  • Storm
  • 框架 1篇
  • Elasticsearch  1篇
  • Spark MLlib
  • Kafka 1篇
  • Zookeeper 1篇
  • 端口号 1篇
  • GPU 1篇
  • 智能推荐 1篇
  • Flume 1篇
  • CAJViewer 1篇
  • OCR 1篇
  • redis
  • 个人博客 1篇
  • tmux 1篇
  • conda 1篇
  • vim 1篇
  • 卷积神经网络

最新评论

  • 基于pytorch的聊天机器人项目

    桃桃33: 可以教教我怎么训练么

  • Pytorch(七) —— 保存和加载模型 & 删除部分模型 & checkpoint断点续传 & CPU/GPU加载和保存 & 序列化与反序列化

    aenglishname: 很详细,感谢感谢

  • 统计学中的Bootstrap方法(Bootstrap抽样)

    小污龟1: 这么一举例不就是中学学过的估计某个生物物种的数量吗?找了半天原来就是这么简单的玩意儿?

  • Pytorch之经典神经网络CNN(Extra-1) —— CNN可视化(查看中间层feature_map)

    m0_64641264: 输出的六层在哪里看

  • Pytorch分布式训练/多卡训练(二) —— Data Parallel并行(DDP)(2.2)(代码示例)(BN同步&主卡保存&梯度累加&多卡测试inference&随机种子seed)

    xxyh1993: 没看明白这个随机种子放在哪里

您愿意向朋友推荐“博客详情页”吗?

  • 强烈不推荐
  • 不推荐
  • 一般般
  • 推荐
  • 强烈推荐
提交

最新文章

  • huggingface的生成模型
  • google drive谷歌云盘 linux下载(gdown)
  • Pytorch amp(混合精度)的bfloat16和float16
2023年8篇
2022年99篇
2021年330篇
2020年677篇
2019年148篇
2018年145篇

目录

目录

分类专栏

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

深圳SEO优化公司荆门百度网站优化排名淮北seo排名锦州网站定制报价四平百搜标王多少钱木棉湾百姓网标王推广哪家好阳江网站推广山南设计公司网站推荐重庆设计网站价格十堰网页制作亳州百度seo哪家好资阳模板网站建设报价龙岗百姓网标王公司西宁建网站公司亳州网站搜索优化报价大运百度竞价报价晋城关键词按天收费哪家好南昌网站建设设计报价长治网站定制报价安康如何制作网站推荐日照百度竞价价格深圳模板推广哪家好和田高端网站设计多少钱甘孜外贸网站设计开封SEO按天扣费报价商洛至尊标王推荐桂林关键词排名包年推广哪家好铜仁百姓网标王益阳企业网站制作哪家好丽江网站搜索优化哪家好大连百度关键词包年推广价格歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化