矩阵的实际意义

本文转载自十分钟理解线性代数的本质

我在上个月修了数值矩阵运算这门课 (Numerical Matrix Computing),对矩阵的变换和一些性质有了一定的理解。

在这里总结一下自己的研究的一些心得。

在经过了这次的学习之后,我由衷地感慨,我以前学的线性代数是什么鬼呀!

最近由于选修博士的课程《矩阵运算》。所以我重新在网上恶补了一遍《线性代数》的基本概念[1],对这门课有了全新的认识。

现在想想我大学学的线性代数,我真的会感慨,我之前都在学些什么呀!

如果你觉得自己当初线性代数也是学的一团雾水,不妨接着往下看看,绝对让你能够透彻的理解线性代数!

线性代数的本质

先一句话先把最重要的东西说了,什么是线性代数?

线性代数的本质,其实是一种高维空间上的变换。

这句话虽然简单,但这句话具体什么意思呢。别急,我们引入一个很直观的例子来理解这个数学表达。

拿二维空间中的小纸片人为例来说,小人在此:

在这里插入图片描述

我对一个小人进行位移,拉伸的一系列线性操作,它可以变成另一个样子:
在这里插入图片描述

这就是线性代数要做的一些事情。我对这个小人做的一些操作,就叫矩阵,也就是对这个对象的一些操作或者说映射。

所以乍一看,这个问题好像并没有什么特别难的,为啥线性代数这么难呢。

主要是很多的基本概念和实际的物理含义没有挂钩。

接下来,我们就来讲讲线性代数中的各个名词和物理含义的联系。

行列式

首先第一个概念就是矩阵的行列式。还记得刚开始学习线性代数的时候,老师上来就咔咔给我们一顿求解矩阵的行列式。

二阶矩阵的行列式是下面的这个公式,大家应该依稀还记得求矩阵的行列式的求法(不是定义),对角线相乘再相减:
在这里插入图片描述

然而,我还记得一个学期的线性代数学完了,我连第一个问题都没有解决。那就是,老师,咱们为什么要求一个矩阵的行列式?

为什么?

为什么?

在这里,我就来告诉大家,为什么要求解矩阵的行列式!

还是举一个例子,这次我们把上面的小纸片人换成一个面积是1*1的小方块:
在这里插入图片描述

我们用一个矩阵对它进行一顿操作,就得到了下面的样子:
在这里插入图片描述

可以看到,经过了图中所示的矩阵的变换之后,我们之前的小方块变成了大一点的矩形,面积变成了3*2,也就是6。

而我们再算算图中这个矩阵的行列式的数值,也是6。

行列式的数值和矩阵变换之后的面积一样!

朋友们,这不是巧合!

我们可以再试验一个矩阵变化:
在这里插入图片描述

我们用另一个矩阵对原来的小方块进行一顿操作,可以看到之前的小方块变成了一个斜一点的矩形。

变换后的斜方形的面积是1,而图中这个矩阵变换的行列式的数值也是1。

行列式的数值和矩阵变换之后的面积仍然一样!

这!其实就是行列式的非常重要的物理意义!它其实就是矩阵变换带来的面积变化。

我第一次看到这个概念的时候,觉得醍醐灌顶,原来行列式的意义可以这么理解!

同时感慨,曾经我求解了不下一千个矩阵的行列式,原来自己根本不知道自己在求些什么东西!

当然,上面的定义是不准确的,对于二维来说,行列式代表的就是面积变化,三维来说,行列式表征的就是体积变化了,推之高维空间亦然。这样就严谨一些了。

逆矩阵

现在我们应该知道了矩阵是一种变换,想想上面的矩阵变换,我们可以把一个小方块变成一个斜斜的方块。

那么一定存在另一种矩阵的映射,能把这个斜斜的方块变回原来的小方块,是不是?

所以逆矩阵的物理意义就出来了,如果有个矩阵能把经过变换之后的斜斜的这个方块:
在这里插入图片描述

还原成为之前的小方块:
在这里插入图片描述

那么它就是原来那个矩阵的逆矩阵。

可以这么理解,逆矩阵就是一种对原矩阵的逆向变换。

对于逆矩阵,在数学上,有这么个表达:

A 是一个矩阵, A-1是A 的逆矩阵,它们相乘会得到一个单位矩阵。

结合物理意义我们就能理解这个公式了:一个物体经过了A矩阵的变换,在经过A 的逆矩阵的变换,就等于保持不变(单位矩阵就是保持不变)。

简单来说一句话,变过去又变回来,那就是没有变。

这就是逆矩阵的性质。

矩阵的秩

如果说上面的东西还只是有点意思的话,那接下来讲的东西就要进入高潮了。

由上面的论述,我们知道了逆矩阵是啥东西——就是一种反向变换。

一切看似没啥问题。

但是问题来了。我们喜欢折腾的数学家不久发现,有些矩阵变换没法求逆变换!

这是为什么呢?

这还要从矩阵的行列式说起。

我们从上面知道了,行列式表征的一种面积的变化。但是我们会发现有很多矩阵的行列式的数值是0。

啥意思呢?

很不严谨地举一个例子,想想我们上面提到的那个小方块。

现在有一种变换,让这个小方块的面积变换后变成零了。你觉得这是一个什么变换?

不知道你猜出来没(反正我一开始是没有头绪),只有一种可能:

这个小方块被压缩成了平面上的一个点或者一条线!
在这里插入图片描述

以至于变换后的面积为零!

这就是行列式为零的物理意义。

借由这个物理意义,我们进一步可以知道:

如果一个矩阵变换的行列式为零,代表这个变换将对目标进行降维(比如从平面变成点)。

然后我们可以想象,一个物体维度一旦下降(比如从平面变成点),这个过程将不能逆转(从点重新恢复成平面)。

这就是为什么有些矩阵变换不能求逆矩阵!

进一步,我们就能得到线性代数里面最常用的一个结论:

行列式为0的矩阵是不可逆矩阵,不可逆矩阵的行列式就是0。

我第一次看到这个结论,内心是在咆哮的:

这就是传说中的降维打击啊!

科幻里面的东西原来就在身边,只是我一直没有去挖掘过!

那么什么又是矩阵的秩呢?

一句话解释就是,矩阵变换之后所给出的维度,就是矩阵的秩。

什么意思,打个比方,很简单,如果对一个三维物体进行一个矩阵变换,变成了一维的,那么这个矩阵的秩就是1,如果得到的是二维的,那么这个矩阵的秩就是2。

如果变换之后仍然是三维物体,那么这个矩阵的秩就是3,也叫做满秩(没有维度的损失)。

前两种情况下,经过矩阵变换后,维度都会下降,信息都会丢失。可以想象,他们相应的行列式都为零——对于一个三维物体,无论是变成了直线还是点,面积都是变成了0。

所以我们又得到了一个重要结论:

只有满秩的矩阵(变换之后维度不变)行列式才不为零。

我们可以看到,用物理含义来看这些定义,会显得格外通俗易懂。

特征根与特征向量

接下来我们来讲讲线性代数里面最最核心的最经典的一个问题:

求解矩阵的特征根和特征向量。

我刚开始学习矩阵这门课的时候,老师啥也没说,整节课就围绕着求解一个矩阵的特征向量和特征根展开了。

遗憾的是,我再次懵圈了,因为我连一个最基本的问题都没搞明白,嘿,老师,我们为啥要求解特征根和特征向量呀?

啥是矩阵的特征根?

啥事矩阵的特征向量?

啥?啥?啥?

于是我下课自己查看了相关资料之后,网友的一通介绍让我豁然开朗:

什么是特征向量呢,就是在高维空间中,经过了某个矩阵变换之后,保持不变的向量,就是这个矩阵的特征向量。

看不懂?

没关系,一如既往地,我们还是来举个例子。如下图,假设我们有一对向量是下面这个样子的:

在这里插入图片描述

经过了一个矩阵变换之后就变成了这个样子:

在这里插入图片描述

然后我们再随意的取另一个向量,黄色的箭头:

在这里插入图片描述

看看它经过了这个矩阵变换之后的样子:

在这里插入图片描述

可以看到,这个黄色的向量经过矩阵变换之后,方向和大小都改变了,注意那个粉色的延长线。

我们接下来再看一个经过了变换之后,方向可以不改变的向量,图中的黄色箭头:
在这里插入图片描述

我们可以看到,经过了矩阵变换之后,这个黄色的箭头的方向保持了不变!

重点来了!!!

从物理意义来讲,这种经过了矩阵变换之后,方向依然能保持不变的向量,就是这个矩阵的特征向量,这些特征向量经过变换后大小的改变,就是该特征向量的对应特征值了。

为什么叫这个矩阵的特征向量呢,数学家说了,这是因为咱们只用这一个向量,就能代表这个矩阵的变换,所以叫做特征向量。

可能你又要问了,特征向量有啥用呢?

好的,例子再次登场!

如下图,我们有一个立方体的物体:

在这里插入图片描述

我们现在对这个物体进行一波3D 旋转,得到下面这个样子:

在这里插入图片描述

虽然我告诉旋转的过程是,红的那一面从右边转到了左边。

但是你可能还是很难想象它到底是怎么转过来的,对吧?

计算机也很难想到!

然后,怎么办呢?

为了直观起见,我们可以想象一下这给它添加一个旋转轴,如下图:

在这里插入图片描述

它旋转的时候,就是围绕着这个轴来转的:

在这里插入图片描述

你可能会说,行吧,好像能想象出来了。

但是旋转就旋转吧,和特征向量有啥关系呢。

人数学家说了,这个旋转其实就是一种矩阵变换,而这个轴就叫做这个旋转变换的特征向量!

因为在整个变换中,只有这个轴的方向是没有改变的!

也就是说,我们找到了这个轴,也就是特征向量,我们就找到了这个旋转,也就是矩阵变换的最简洁的表征方法!

基于上述的这个理论,在现代的矩阵求解特征向量的运算中,有一个叫 Power 迭代法 的算法被广泛用于计算机求解矩阵的特征向量。

它的原理就是基于——特征向量就是,经过矩阵变换后,方向保持不变的向量。

Power 迭代法 它具体是怎么进行求解一个矩阵的特征向量的呢?非常简单。

我们首先任意选一个向量,对它进行矩阵的变换,然后得到一个新的向量,我们再对这个新的向量进行矩阵变换,如此反复。我们可以想见,经过了无数次的矩阵变换后,向量会趋近于不变。而这就是特征向量的定义——经过矩阵变换后,方向保持不变的向量。

以上,就是我在课余时间对线性代数物理含义的一些总结。

总结

通过线性代数的学习,我的收获很大。一方面,我发现学习一定要多问为什么,把整个事情的来龙去脉摸清楚。如果只是一知半解,那么不仅学的知识很不牢固,学习的时候也会很枯燥。

另一方面,借用万门大学(一个网上课堂)的老师的一句话来说就是:

所以我们学的越多,我们发现自己不懂的东西越多,但是我们的知识体系变大,仍然是一件有趣的事情,因为它可以更好的帮助我们做决策。

以及如果我们不去扩大自己的知识体系,生命实在是太无聊了,翻来覆去就那几种需求。

多多学习新的知识,探索别人没有发现过的乐趣,真的能让人感受快乐。

君王的羔羊
关注 关注
  • 49
    点赞
  • 147
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
程序员的自我修养之数学基础03:矩阵意义和运算
M&Q的博客
08-21 1253
什么是矩阵? 按照课本上的定义: 矩阵就是由m行n列数放在一起组成的数学对象。 或者更简单一点: 把数列排成矩形,就是矩阵。 对于一个n行m列的矩阵,我们把它叫做一个n*m矩阵。当矩阵的行数和列数相同时,我们称这样的矩阵为正方矩阵,根据其规模将其称为2阶矩阵、3阶矩阵等。 ...
协防差矩阵的概念及意义
08-02
标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多
理解矩阵,矩阵背后的现实意义.doc
10-01
理解矩阵,矩阵背后的现实意义.doc
【线性代数】矩阵的基本概念和运算性质
王斯的博客
06-01 5652
矩阵的基本概念及其意义以及常见的 特殊矩阵 什么是矩阵 m行n列矩阵 方阵 当m=n时,成为方阵 列向量 一行数,即m=1 行向量 一列数,即n=1 两个矩阵相等 1.两个矩阵的行和列都相同 2.对应位置的元素也要相同 零矩阵 每个元素都是0 对角矩阵 记作: 单位矩阵 是特殊的对角矩阵,一般记作EEE or III 一种线性变换 从一个Rn\R^nRn空间映射到RmR^mRm空间。 矩阵的加减法数乘以及性质 加减法的前提条件:A和B矩阵在维度上相同(行列数相同) 注意: C=A+BC=A+BC=
矩阵的物理意
tianwaifeimao的专栏
09-20 1509
转载说明:原文转自@NightkidLi_911的文章,此处仅作为个人学习使用。 原文地址:http://blog.csdn.net/nightkidli_911/article/details/38178533 及                    http://blog.csdn.net/nightkidli_911/article/details/38189347 矩阵的物
线性代数的本质
Coding、Learning and Sharing
01-29 1331
线性代数的本质 声明:这篇文章是转载,详细出处没有找到,倒是找到一处很有可能是原作者的博客,不过作者很早就没有更新了,最为重要的是下面有人提醒作者是转载的时候,作者没有回复,我也不确实是不是真的原作者。转载这篇文章主要是因为最近在学习Machine Learning的相关理论,其余其中的矩阵知识需要有清醒的认识,看完这篇文章,再回忆下研究生阶段的矩阵理论,一时之间竟然有种任督二脉打通的感觉,...
线性代数的本质--对线性空间、向量和矩阵的直觉描述
weixin_34284188的博客
07-25 1083
在网上看到的一篇文章,看了以后感触颇深。 线性代数课程,无论你从行列式入手还是直接从矩阵入手,从一开始就充斥着莫名其妙。 比如说,在全国一般工科院系教学中应用最广泛的同济线性代数教材(现在到了第四版),一上来就介绍逆序数这个古怪概念,然后用逆序数给出行列式的一个 极不直观的定义,接着是一些简直犯傻的行列式性质和习题——把这行乘一个系数加到另一行上,再把那一列减过来,折腾得那叫一个热...
神奇的矩阵理解
leneey的博客
10-23 3140
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34993631/article/details/80671693 说明 一直想总结一下以前读过的一片文章来概括一下自己对矩阵的重新认识。首先说明一下这篇文章是《...
农业信息UC矩阵联系
11-20
U/C矩阵求解 例1:请对表1给出的U/C矩阵进行检验并求解,最后解释实际意义。 表1 某企业管理信息系统的U/C矩阵
初等矩阵的射影几何意义及其应用
02-08
这不仅为几何变换空间透射找到简洁的解析形式,同时赋予数值计算工具初等矩阵以射影几何意义.由此出发,可重新解释包括Householder方法在内的一些线性代数方程组的直接解法,提出实际上是并行算法的焦平面法.通过...
1.1矩阵——如何理解矩阵
u013527834的博客
01-06 2765
矩阵——如何理解矩阵 标签: 数学 线性代数 矩阵 !请尊重作者的辛苦,转载请注明出处! 初学矩阵与线性代数,我们都会感觉有硬生生的定义一个矩阵和行列式的运算接着便是一堆的特征向量之类的数学证明与技巧,一时间头昏脑涨,感觉数学就是自己强行造出和定义一些莫名其妙的跪着然后我们稀里糊涂的在规则被要求证明和计算,完全丧失了数学的意义和兴趣。故写此文,让大家更好理解矩阵与线性代数 其实数学的发展是抽象...
向量、矩阵的基本意义
凌晗的博客
09-27 4920
1. 矩阵乘以向量:Ma=b 1.0 矩阵可以看做向量变换的一种表示("动词")——矩阵M乘以向量a表示对向量a施加向量变换M,使向量a变换成一个新的向量b,二者是同一坐标系下的不同客观向量 1.1 矩阵可以看做向量“垂直投影+缩放”的一种表示——矩阵M乘以向量a表示将向量垂直投影到坐标系M上(M的两行是两个投影轴)并缩放该投影轴长度倍,得到的结果为b。特殊的,当M每行都是单位向量时(比如M是...
【线性代数的几何意义】行列式的几何意义
weixin_34148508的博客
12-25 3556
三、行列式的几何意义: 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数或者多项式。 一阶行列式 (注意不是绝对值) 二阶行列式 三阶行列式 N阶行列式 ...
矩阵的运算以及含意
qq_34959283的博客
02-16 682
1 矩阵的乘法在函数中的表达方式就是映射 不同的函数对应不同的坐标系,A•B就是矩阵A投影到矩阵B中,相应的向量坐标也会在投影后重新分部。 2 矩阵的叉乘就是取矩阵的行列式 行列式是由线性方程推导来的,在矩阵几何中是向量组成的平行四边形面积(二维)或则平行六面体体积(三维)。 3 矩阵的点乘 利用一个向量到另一个向量的投影与被投影向量的模的积两两相同证的向量点积公式。 4 矩阵的特征值 5 矩阵的旋转矩阵 三维同理可推导。
理解矩阵矩阵的现实意义(二)
wyj0613的专栏
10-12 2556
上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数学是变量的数学,是研究运动的数学。大家口口相传,差不多人人都知道这句话。但是真知道这句话说的是什么意思的人,好像也不多。简而言之,在我
矩阵的实质意义(1)
热门推荐
qq_40216084的博客
04-16 4万+
原文链接:https://blog.csdn.net/myan/article/details/647511
位运算符知识点习题及参考答案
最新发布
05-29
位运算符知识点习题及参考答案
邻接矩阵的平方和特征矩阵相乘的实际意义
09-21
邻接矩阵的平方表示从一个节点到另一个节点的长度为2的路径的数量。将邻接矩阵平方后,得到的元素表示从一个节点到另一个节点的长度为2的路径的数量。而特征矩阵则表示每个节点的特征向量。将邻接矩阵的平方和特征矩阵相乘,可以得到每个节点特征向量被邻接矩阵平方权重调整后的结果。 实际意义上,邻接矩阵的平方和特征矩阵相乘可以用于图结构中的节点表示学习。通过调整邻接矩阵中路径长度为2的权重,并考虑了每个节点的特征向量,可以得到更准确的节点表示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • 太赫兹,光,机械波 27322
  • C4D模型导入到Unity(带材质) 22647
  • TIM1_CH1N和TIM1_CH1的区别和控制 22424
  • Android Studio Layout编译报错AAPT: error: attribute layout_constraintBottom_toBottomOf 16961
  • 运算放大器工作原理 12695

分类专栏

  • 自学笔记 12篇
  • 总结、人生、思考 10篇
  • 机械设计 1篇
  • 考研 9篇
  • 嵌入式开发 41篇
  • 小程序开发 7篇
  • Python、AI 35篇

最新评论

  • 【Pyqt】QObject::connect: Cannot queue arguments of type ‘QTextCursor‘

    _Refresh_: 解决了我莫名的崩溃问题表情包

  • C4D模型导入到Unity(带材质)

    Sengimie: c4d制作的点级别动画怎样导入呀?

  • 【Pyqt5】QWidget: Must construct a QApplication before a QWidget

    你不是猫: 还得是哥们儿你

  • hexo搭建的博客只显示文字,不显示主题

    Karcarve: 我修改了之后又再次使用了hexo的clean等命令,完美解决了问题。表情包

  • 解决pads新建总是提示替换字体

    m0_66348461: 还是没用啊

您愿意向朋友推荐“博客详情页”吗?

  • 强烈不推荐
  • 不推荐
  • 一般般
  • 推荐
  • 强烈推荐
提交

最新文章

  • 路由器交换机直连方案(RM50+RTL8367N)
  • ubuntu22.04 vsc命令行复制粘贴时下划线消失
  • 基于ROS的AGV激光导航开发日志
2024年6篇
2023年9篇
2022年17篇
2021年54篇
2020年134篇
2019年10篇

目录

目录

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

深圳SEO优化公司玉林百度标王永新网站制作公司鹤壁网站优化按天收费哪家好阿坝网站推广方案报价丹东推广网站推荐乐山至尊标王公司晋城外贸网站制作哪家好宜春建设网站清徐网站设计模板多少钱绍兴关键词按天扣费多少钱盘锦百度网站优化公司盘锦阿里店铺托管哪家好菏泽网页制作推荐张家口关键词排名包年推广报价普洱SEO按天收费推荐大同网站设计推荐大庆百搜标王价格邵阳百度竞价包年推广公司资阳百度网站优化价格鞍山网站推广哪家好定西设计网站哪家好荆州百姓网标王黔西南网页制作多少钱珠海模板制作推荐肇庆建网站价格阳江网站优化排名黔西南阿里店铺运营普洱优秀网站设计报价中卫优化推荐丹竹头企业网站设计歼20紧急升空逼退外机英媒称团队夜以继日筹划王妃复出草木蔓发 春山在望成都发生巨响 当地回应60岁老人炒菠菜未焯水致肾病恶化男子涉嫌走私被判11年却一天牢没坐劳斯莱斯右转逼停直行车网传落水者说“没让你救”系谣言广东通报13岁男孩性侵女童不予立案贵州小伙回应在美国卖三蹦子火了淀粉肠小王子日销售额涨超10倍有个姐真把千机伞做出来了近3万元金手镯仅含足金十克呼北高速交通事故已致14人死亡杨洋拄拐现身医院国产伟哥去年销售近13亿男子给前妻转账 现任妻子起诉要回新基金只募集到26元还是员工自购男孩疑遭霸凌 家长讨说法被踢出群充个话费竟沦为间接洗钱工具新的一天从800个哈欠开始单亲妈妈陷入热恋 14岁儿子报警#春分立蛋大挑战#中国投资客涌入日本东京买房两大学生合买彩票中奖一人不认账新加坡主帅:唯一目标击败中国队月嫂回应掌掴婴儿是在赶虫子19岁小伙救下5人后溺亡 多方发声清明节放假3天调休1天张家界的山上“长”满了韩国人?开封王婆为何火了主播靠辱骂母亲走红被批捕封号代拍被何赛飞拿着魔杖追着打阿根廷将发行1万与2万面值的纸币库克现身上海为江西彩礼“减负”的“试婚人”因自嘲式简历走红的教授更新简介殡仪馆花卉高于市场价3倍还重复用网友称在豆瓣酱里吃出老鼠头315晚会后胖东来又人满为患了网友建议重庆地铁不准乘客携带菜筐特朗普谈“凯特王妃P图照”罗斯否认插足凯特王妃婚姻青海通报栏杆断裂小学生跌落住进ICU恒大被罚41.75亿到底怎么缴湖南一县政协主席疑涉刑案被控制茶百道就改标签日期致歉王树国3次鞠躬告别西交大师生张立群任西安交通大学校长杨倩无缘巴黎奥运

深圳SEO优化公司 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化